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The ∆-function

The function

∆(z) = q
∞∏

n=1

(1− qn)24, q = e2πiz

is a cusp form of weight 12 on SL2(Z).

This means that for any

[
a b
c d

]
∈ SL2(Z), we have

∆

(
az + b

cz + d

)
= (cz + d)12∆(z).

Its coefficients

∆(z) =
∞∑

n=1

τ(n)qn = q − 24q2 + 252q3 + · · ·

satisfy remarkable properties.
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Ramanujan’s τ -function

In particular, we have

τ(mn) = τ(m)τ(n) if gcd(m, n) = 1

τ(pk) = τ(p)τ(pk−1)− p11τ(pk−2)

|τ(p)| ≤ 2p11/2

.

The last inequality follows from Deligne’s proof of the Weil
conjectures, and implies that |τ(n)| ≤ d(n)n11/2.
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Modular forms facts

Let Sk denote the C-vector space of modular forms f of
weight k with Fourier expansions

f (z) =
∞∑

n=1

a(n)qn.

This vector space is finite dimensional, and for each n ≥ 1,
there is a canonical linear operator Tn that acts on Sk .

There is a basis for Sk consisting of forms that are
simultaneous eigenfunctions for all these operators.

For these forms (normalized so a(1) = 1),
|a(n)| ≤ d(n)n(k−1)/2.
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Powers of ∆

If k ≥ 1, write

∆k(z) =
∞∑

n=k

τk(n)qn.

Q: How large is τk(n) as a function of k and n?

A: There is a constant Ck so that

|τk(n)| ≤ Ckd(n)n(12k−1)/2.
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The constant Ck

This is because we can write

∆k =
k∑

i=1

ci fi ,

where the fi are Hecke eigenforms.

If Ck =
∑k

i=1 |ci |, Deligne’s bound gives the result we want.

How large is Ck as a function of k?
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Numerical data

k log(Ck)

1 0.000

2 −8.424
3 −19.657
4 −33.072
5 −47.874
6 −64.102
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Main theorem

Theorem (R, 2008)

For k > 1, we have

log(Ck) = −6k log(k) + 6k log

(
2π3e

27Γ(2/3)6

)
+ O(log(k)).
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Overview of proof (1/3)

If f and g are two cusp forms of weight k, define the
Petersson inner product of f and g to be

〈f , g〉 =
3

π

∫
H/SL2(Z)

f (x + iy)g(x + iy)yk dx dy

y2
.

If fi and fj are two distinct Hecke eigenforms, then 〈fi , fj〉 = 0.
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Overview of proof (2/3)

Suppose we have explicit bounds

B1 ≤ 〈fi , fi 〉 ≤ B2

on the Petersson norms of the Hecke eigenforms.

If we write

∆k =
k∑

i=1

ci fi ,

we get

〈∆k ,∆k〉 =
k∑

i=1

|ci |2〈fi , fi 〉.
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Overview of proof (3/3)

This gives

〈∆k ,∆k〉
B2

≤
k∑

i=1

|ci |2 ≤
〈∆k ,∆k〉

B1
.

Applying the Schwarz inequality gives bounds on
Ck =

∑k
i=1 |ci |.

It suffices to compute bounds on 〈∆k ,∆k〉 and 〈fi , fi 〉.
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Bounds on 〈∆k , ∆k〉

Elementary arguments give that

0.08906Bk

k
≤ 〈∆k ,∆k〉 ≤ 76.4Bk

k
.

Here B =
( √

2π
3Γ(2/3)3

)24
.
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L-functions

If fi is a Hecke eigenform of weight 12k, then

L(Sym2fi , 1) =
π2

6
· (4π)12k〈fi , fi 〉

(12k − 1)!
.

Here if p is prime let αp be a complex number so that

a(p) = p(12k−1)/2(αp +
1

αp
).

Then,

L(Sym2fi , s) =
∏
p

(1− α2
pp
−s)−1(1− p−s)−1(1− α−2

p p−s)−1.
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Values at s = 1

This L-function is known to have an analytic continuation and
a functional equation of the usual type by work of Gelbart and
Jacquet.

Lower bounds for L-functions at s = 1 are in general difficult
and are equivalent to the problem of zeroes close to s = 1.

In this case, work of Goldfeld, Hoffstein, and Lieman solves
the problem.
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No Siegel zeroes

Lemma

If fi is a Hecke eigenform of weight 12k, then

L(Sym2fi , s) 6= 0

for s > 1− 5−2
√

6
10 log(12k) .
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Proof of Lemma

Let

L(Sym4fi , s) =
∏
p

(1− α4
pp
−s)−1(1− α2

pp
−s)−1(1− p−s)−1

· (1− α−2
p )−1(1− α−4

p p−s)−1.

Let
L(s) = ζ(s)2L(Sym2fi , s)

3L(Sym4fi , s).

This function has a double pole at s = 1, a triple zero at any
zero of L(Sym2fi , s) and non-negative Dirichlet coefficients.

A standard argument shows that L(Sym2fi , s) cannot have a
zero too close to s = 1.
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Lower bound on 〈fi , fi〉

Lemma

If fi is a Hecke eigenform of weight 12k, then

L(Sym2fi , 1) >
1

64 log(12k)
.
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Proof of Lemma (1/3)

Let

L(fi ⊗ fi , s) = ζ(s)L(Sym2fi , s) =
∞∑

n=1

a(n)

ns
.

Let β be a real zero of L(Sym2f , s) and define

I =
1

2πi

∫ 2+i∞

2−i∞

L(fi ⊗ fi , s + β)x s ds

s
∏10

r=2(s + r)
.

The bounds a(n) ≥ 0 and a(n2) ≥ 1 give

I ≥ 4.53 · 10−7.
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Proof of Lemma (2/3)

Shift the contour to Re(s) = α := −3/2− β. We pick up
three poles.

The residue of the pole at s = 1− β is

L(Sym2fi , 1)x1−β

(1− β)
∏10

r=2(1− β + r)
.

The other two residues are negative. This gives

I− 1

2πi

∫ α+i∞

α−i∞

L(fi ⊗ fi , s + β)x s ds

s
∏10

r=2(s + r)
≤ L(Sym2fi , 1)x1−β

(1− β)
∏10

r=2(1− β + r)
.
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Proof of Lemma (3/3)

Solving for L(Sym2fi , 1) and bounding the remaining term
gives

L(Sym2fi , 1) � (1− β).

Plugging in the result of the previous lemma gives the desired
result.

Relating L(Sym2fi , 1) with 〈fi , fi 〉 gives explicit lower bounds
on the Petersson norm.

Upper bounds on 〈fi , fi 〉 can be derived using standard
arguments.
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Remaining questions

Is the constant Ck =
∑k

i=1 |ci | optimal in the inequality

|τk(n)| ≤ Ckd(n)n(12k−1)/2?

Conjecture

We have

Ck = sup
n≥1

|τk(n)|
d(n)n(12k−1)/2

.
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