nite plane value as D and r, approach zero, and will become
progressively larger than the infinite plane value as D and
ro are increased. This trend is shown clearly in Fig. 6. Thus
the experiment can be used either as an empirical attack on
the problem for students who are not far enough along to
go through the derivation, or as a satisfying confirmation of
a less-than-obvious theoretical result.

'J. A. Abbott ( private communication, 29 September, 1970).

’D. S. Edmonds, Jr., “The Resistance Between Two Contacts in 2 Plane—
A Provocative Undergraduate Experiment”, Paper before the AAPT
Winter Meeting, San Francisco, January 1978.

3W. H. Hayt, Jr., Engineering Electromagnetics, 4th ed. (McGraw-Hill,
New York, 1981), pp. 165-167.

*W. R. Smythe, Static and Dynamic Electricity, 1st ed. (McGraw-Hill,
New York, 1939), pp. 74-77.
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I answer the question “Why are there more small things in the world than large things?” in terms
of a probabilisitc model of partitioning a conserved quantity. Benford’s empirical rule for lists of
numbers, that the proportion of numbers with first digit m is log,o(m + 1) — log,, m, is an exact

consequence of the model.

Why are there more small things in the world than large?
Why, for instance, are there more pebbles in a rock slide
than boulders, more raindrops in the atmosphere than
lakes on the ground, and more provinces in the world than
states? A general answer to these questions is because a few
large things can be broken into many small things (e.g.,
boulders and pebbles), many small things can be con-
densed into a few large things (e.g., raindrops and lakes),
and large things are composed of many small things (e.g.,
states and provinces). These observations may appear ob-
vious. Yet, I believe, they are essentially the explanation of
a somewhat mysterious phenomena referred to as “the pe-
culiar distribution of first digits.”’

It is a simple matter to illustrate the phenomena by in-
specting a ranked list of the population of cities and towns
in the United States found in a geographical atlas or al-
manac. In any one decade, say from one hundred thousand
to one million, roughly a third of the numbers begin with
one, a somewhat smaller number begin with two, an even
smaller number begin with three and so on through the
digits to nine. More surprisingly, the same pattern is ob-
served in many disparate collections of numbers. Among
those identified by the physicist Frank Benford in 1938 are
the surface area of largest 335 rivers in the world and the
street addresses of the first 342 persons listed in American
Men of Science.? Counting the frequency with which each
of the numbers 1-9 appear as first digits in some 20 000
numbers of this kind, he found evidence for the following
rule. The first digit m appears with a probability log,,(m

+ 1) — log,, m. Thus, according to Benford’s rule the
probability that an entry will start with 1, 2, 3,4, 5, 6, 7, 8,
or 9 is, respectively, 0.301, 0.176, 0.125, 0.097, 0.079,
0.067, 0.058, 0.051, or 0.046.

Physicists usually leave questions such as those posed in
the opening paragraph to other specialists. Even so, these
questions remind us of one we often do ask: What is the
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most probable way a conserved quantity can be partitioned

" into pieces subject to one or more other constraints? For

instance, in determining the most probable velocity distri-
bution of a gas one counts the number of a priori equally
probable states, having the same total energy and number
of atoms, which results in a particular distribution. The
counting is done in accordance with a rule for distinguish-
ing among states and the most probable distribution is the
one corresponding to the largest number of states.

The model presented here is different. I claim that what
we observe in the number distribution of the sizes of things,
be they rocks in a pile of rubble or lakes, ponds, and drop-
lets on the Earth’s surface, or cities and towns, is not a most
probable distribution but a sum or equivalently an average
or expected distribution of pieces of a conserved quantity.
In the derivation which follows I constrain the average
only by specifying the largest and smallest possible piece of
the conserved quantity. Also each distinct distribution is
assumed a priori equally probable. The average distribu-
tion determined in this way turns out to have Benford’s
empirical rule as an exact consequence.

Consider first a conserved quantity of magnitude X
which is broken into n; Ax; pieces with magnitudes between
x; and x; + Ax; forj taking on integer values between 1 and
N. Here N is the number of divisions made in a closed do-
main defined by lower, x,, and upper, x,, bounds. Thus the
set of numbers n;, x;, and Ax; for all j defines a discrete
distribution of fragments. Also,

N
X= z x;n;Ax;, (D
i=1
expresses a conservation relation.
Now, consider all such distributions on the domain
x,<x;<x, consistent with Eq. (1). Among possible distri-
butions we include those with real #;. Restricting n; to the
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integers actually makes a general solution to this problem
more difficult. The quantity X is the same for all these dis-
tributions but the number of fragments 27_ , n;Ax; need
not be. Our goal is to find the average or expected number
density, 71;, of each of the supposedly random numbers #;
subject to the conservation relation (1), the condition that
x,<x;<x, for all j, and the ansatz that each distinct distri-
bution is equally probable. Fortunately, we need not per-
form the averages explicitly, but can make use of the fol-
lowing simple theorems governing averages of constants
(a,s) and random variables (x,, etc.):

A:  ax, =aX,

B: x4+x,=X,+X,,

C: x,+x,4x, =S5
X =X, =X, =5/n.

Theorem C follows from B and the intuition that since
there is nothing to distinguish each term in the sum from
any other term the average of each term must be equal.?
Finally, take the average of both sides of Eq. (1) and
make use of theorems 4, B, and C. Then it follows that

nxAx, = nx,Ax, ==X /N. 2)
Therefore, the average distribution for discrete »; and x; is
n; =X /(Nx;Ax;) (3)

for all j. The limit of continuous x and 7 and vanishing Ax;
is most easily found when the distribution’s domain is di-
vided uniformly so that Ax, =Ax,=--Axy = (x,
— x;)/N. Then the limit Ax;—0 of Eq. (3) with x, — X,
held constant results in # proportional to 1/x for x,, <x<x,.
I conjecture, without proof, that the division may also be
made nonuniformly with essentially the same results,
namely, a function 7 proportional to 1/x almost every-
where and integrable in the sense of Lebesgue.

It should be clear that a table which lists values of a
quantity x which appear with a frequency proportional to
1/x will, when considered over an integral number of dec-
ades, obey Benford’s rule. Specifically, the proportion of
first digits m for entries between 107 and 107 * ! will be

m+ 1 107+
f Ei/f d_len(m+l.)/ln10
m X 10° X m
1
=logm(”“r ) 4)
m

which is independent of the decade index p. This result
immediately generalizes to numbers expressed in any base.
Because Benford’s rule is a consequence of the 1/x distri-
bution, which in turn is a consequence of a conservation
law and the present probabilistic model, I suspect that
many tables obeying the rule are identical to or closely cor-
related with lists of pieces of conserved quantities. Alterna-
tively, those lists that do not obey Benford’s rule are prob-
ably not lists of pieces of a conserved quantity or violate the
model in some other way.
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Sometimes the identity of the conserved quantity rel-
evant to a particular list is not obvious. An example is the
frequency of first digits of a random selection of street ad-
dresses. If streets are treated as equal width strips of var-
ious lengths, then the sum of their areas is the quantity that
is conserved upon partitioning. According to the present
model their lengths x will be distributed as 1/x. Conse-
quently, the actual frequency of street addresses numbers
although not necessarily distributed as 1/x will be weight-
ed toward the smaller numbers.

Other explanations of Benford’s rule exist. Furry and
Hurwitz show that to good accuracy many distributions
have Benford’s rule as a consequence,* while Goudsmit
and Furry offer the nonsequitur that “It [ Benford’s rule] is
merely the result of our way of writing numbers...”> While
the former is conceded the latter statement cannot be true
since it fails to allow for distributions that do not obey
Benford’s rule. Other papers that argue the rule is a proper-
ty of the number system itself suffer the same defect.®

More closely related to our own explanation is that of
Roger Pinkham.” Pinkham first postulates the existence of
some rule, not necessarily Benford’s, which determines the
probability of appearance of the first digits, then shows that
if this rule is invariant to changes of scale (e.g., changing
length measurements from feet to meters) it must be Ben-
ford’s rule. The present explanation is consistent with
Pinkham’s theorem on the level of the distribution f (x)
producing the rule. Specifically, the amount of conserved
quantity, f (x)dx, contained within an arbitrarily small
range of sizes, dx, is scale invariant as long as f (x) < 1/x
for the sizes considered. Scale enters only with the distribu-
tion endpoints, that is with the smallest and largest possible
pieces of the conserved quantity.

We can easily think of lists of numbers that are not lists
of pieces of a conserved quantity: the ages of a random
selection of people, the masses of elementary particles, as
well as the square roots of the first # integers. Nevertheless,
fragments of the conserved quantities mass, energy, vol-
ume, surface area, as well as others, are ubiquitious and
Benford’s law should apply to these on average.
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