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THE NUMBER OF REAL ROOTS OF RANDOM 
POLYNOMIALS OF SMALL DEGREE* 

By WILLIAM B. PAIRLEY 

Kennedy School of Government, Harvard University 

SUMMARY. Random polynomials with random coefficients have been studied by a 

number of authors, including Kac (1943, 1949), who showed that the average number of real roots 

of polynomials of degree n is asymptotically (2/tc) log n. The present paper investigates the aver 

age number of real roots for polynomials of small degree and coefficients that are 1 or ? 1 with equal 

probability. Log-like behavior of the average for small n is showTi by finding exact distributions 

of the numbers of real roots for n between 1 and 10 and by sampling the large but finite populations 
for n between 10 and 50. 

1. Introduction 

A random polynomial is a polynomial whose coefficients are given accord 

ing to some probability distribution. Denote a polynomial by p(x), and let 

the coefficients be denoted a%, so that for an w-th degree polynomial : 

p(x) 
= 

a0+a1x+a?xP-\-...+ant??. 
... 

(1) 

The distribution of the number N of real roots of random polynomials 
has been studied by several authors, and in particular the mean number of 

real roots, En(N), has been studied for several different distributions of the 

coefficients a\. An early reference is Bloch and Polya (1932) who showed that 

En(N) 
= 

O(V^) when P[a{ 
= 

-1] 
- 

P[at 
= 

0] 
= 

P(at 
- 

1] 
= 

1/3. Little 

wood and Offord (1939) gave the upper bound En(N) < 25 (logn)2+12 log n 
for three distributions : (i) P[a$ 

= ? 
1] 

= 
P[?| 

? 
1] 

= 
1/2, (ii) a% uniform on 

[?1, 1]; and a% normally distributed. The a? are independent in each case. 

Then Kac (1943, 1949) showed that for uniform and normally distributed 

coefficients the asymptotic value for En(N) as the degree n of the polynomial 
increases to infinity is given by the simple expression 

En(N)^(2l7T)logn. ... (2) 

There are remarkably few real roots of random polynomials. Erdos and 

Offord (1956) showed that this asymptotic formula holds for the case P[ai 
? 

1] 
= 

P[a{ 
= ? 

1] 
= 

1/2. Stevens (1965) and Ibragimov and Maslova (1971) 
have extended this result to wider classes of distributions within the domain 

of attraction of the normal. 

*This research was facilitated by a grant from the National Science Foundation, GS-2044X, 

to Harvard University. 
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2. Finite populations of polynomials 

This paper reports on an investigation of the values of En(N) for poly 

nomials of small degree and for coefficients that are 1 or ?1 with equal pro 

babilities and mutually independent. We call these ?1 polynomials. As 

mentioned above, the asymptotic result (2) holds for ?1 polynomials, and 

they are particularly amenable to study for small values of n. 

The population of all -j-1 polynomials of given degree n is finite, there 

being 2W+1 polynomials corresponding to the 2n+1 choices of the sequences of 

n-\-\ coefficients 1 or ? 1. For very small values of n the entire exact distri 

butions of the number of real roots N may be obtained, and En(N) along 

with these, simply by calculating the real roots of all the 2W+1 polynomials. The 

calculations are reduced by certain symmetries in the relations between coeffi 

cients and roots, spelled out in Section 5 below and simplified by the fact that 

all of the real roots of these polynomials lie within the real intervals [?2, 

-1/2] U [1/2, 2]. 

Of course as n increases there comes a point where calculating the roots of 

all 2W+1 polynomials becomes too costly. To obtain the exact distribution for 

n = 15 would require calculating the roots of 213 =8192 polynomials of degree 
15 and for n = 20, 218 = 260, 544 polynomials of degree 20. The present 

study uses a stratified sample survey design to sample the populations of poly 

nomials for n larger than 10 in order to study En(N) as n increases. 

3. Exact distributions 

For n = 1, 2, ..., 10, figure 1 plots the exact frequency distributions of 

the numbers of real roots for ?1 polynomials and degrees n = 1, 2, ..., 10. 

Table 1 gives the computed values. 

TABLE 1. EXACT DISTRIBUTIONS OF NUMBERS OF REAL ROOTS 
FOR DEGREES n = 1, 2, ..., 10 

odd degree even degree 

degree number of degree number of 
n real roots count frequency n real roots count frequency 

1 1 4 1.000 2 0 4 .500 
2 4 .600 

3 1 12 .750 4 0 12 .375 
3 4 .250 2 20 .625 

5 1 44 .688 6 0 32 .250 
3 20 .312 2 96 .750 

7 1 164 .641 8 0 116 .227 
3 92 .359 2 380 .742 

4 16 .031 
9 1 596 .582 10 0 408 .199 

3 424 .414 2 1512 .738 
5 4 .004 4 128 .063 
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odd 

1 3 

n = ? * ^ ) 

I 3 1 3 

??s 7 

1 3 5 
number 
of roots 
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even degree 
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J_ I number 

~? 2~ 4 ? 2 4 of roots 
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Fig. 1. Exact Distributions of Numbers of Real Roots For Degrees 
n= 1, 2, ..., 10. 

Solutions for the roots were obtained using an algorithm that employs 

steepest descent to locate approximate roots and then Newton's method to 

find closer approximations. The method and computer program are described 

by F. Lilley (1967). The means of the exact distributions of the numbers 

of real roots are plotted in Figure 2. Treating the cases n even and n odd 

separately, the plot indicates smooth increases in the means with n. 

Bn(N) 

u 

10 

degree 

Fig. 2. Means of Exaet Distributions of Numbers of R^al Roots, 
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4. Sampling experiment for larger n 

For values of n larger than 10 a sampling experiment takes advantage of 

this smoothness by taking only a grid of values of n for n odd and n even. 

To estimate En(N) the population of polynomials for each degree n was sampled. 
A stratified random sample using proportional allocation was chosen to esti 

mate En(N) efficiently. A stratifying variable is suggested by Descartes' 

rule of signs, which states that an upper bound for the number of positive 
real roots of a polynomial is the number of changes of sign in the sequence of 

coefficients. When the coefficients are 1 or ?1, \p(l) | is equal to the absolute 

value of the difference between the number of +l's and the number of ? l's 

which in turn is associated with the number of sign changes and therefore it 

is conjectured, with the number of positive real roots. The conjecture is 

verified for degrees n ? 1, 2, ..., 10 by computing N and |^(l)j. Since a 

positive root of p(x) is a negative root of p(?x), \ p(? 1) J is negatively associated 

with the number of negative real roots. Now | p( 1 ) | and | p( 
? 1 ) ) are independent 

for n odd, and for n even they are less and less correlated as n increases, so that 

the sum ^ST = 
Jjp(l) | + |i>(?1) j is a? random variable that is negatively associated 

with the number of real roots positive or negative. Therefore K is suggested 
as a simply computed stratifying variable for sampling ?1 polynomials. 

A sample of m ? 100 polynomials was taken from the strata defined by 
values of K for each of 10 populations of polynomials, namely for every eighth 
value of n between n = 15 and n = 47, that is, n ? 

15, 23, 31, 39, 47, and 

between n = 16 and n = 48, that is, n ? 16, 24, 32, 40, 48. For polynomials 
of higher degrees than these the costs and the numerical difficulties of comput 

ing roots mount sharply. 

Using the results presented in Section 5 on the partitioning of the popula 
tions into groups of 4 and of 8 polynomials having the same numbers of roots, 

it was only necessary to sample a quarter of the 2W+1 polynomials of each degree. 

(For this reason too, the values of K appearing in Table 2 below refer only to 

sums of the last n?1 coefficients of p(x). See Section 5.) 

Table 2 gives the observed mean numbers, ynjt, of real roots for the different 

strata. The negative association between the values of yn^ and of K for a 

given n is apparent. The values of EJN) were estimated from the stratum 

means by the weighted means, yn : 

yn 
= 

XMKynKIM 
K 

where M is the population size (M 
= 

(2^+1/4) 
= 2?_1). 
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TABLE 2. STRATUM MEANS, ynK 

degree n 

K 15 23 31 39 47 

2 2.47 2.00 2.47 3.33 3.40 

6 1.81 2.20 2.45 2.64 3.40 

> 6 1.61 

10 2.43 2.10 3.00 3.00 

>10 2.00 2.13 

14 2.55 2.50 

>14 2.43 

18 2.20 

>18 1.25 

degree n 

K 16 24 32 40 48 

2 2.13 2.00 3.00 2.75 2.40 

4 2.00 2.44 3.00 2.44 2.57 

6 2.17 2.50 2.67 3.29 2.33 

8 1.79 2.00 2.35 2.88 2.89 

10 2.20 2.00 2.71 2.43 2.50 

>10 1.50 

12 2.00 1.67 1.00 2.57 

>12 1.20 

14 2.22 2.89 2.20 

>14 1.45 

16 2.50 1.50 

>16 2.20 2.00 

The values of the weighted means, yn, and their estimated variances, 

Sn, are given in Table 3. The sample variances in each stratum, s%K, were 

used to compute the variances s% according to the formula : 

si = 1 VMR{MK-mk) ^L_ M K mu 
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TABLE 3. ESTIMATES OF MEANS AND VARIANCES FROM 
STRATIFIED SAMPLES 

degree 
n 

15 

23 

31 

39 

47 

odd degree 

mean yn variance $2 

1.98 

2.22 

2.28 

2.78 

2.86 

.88 

1.43 

1.32 

1.99 

1.86 

16 

24 

32 

40 

48 

even degree 

mean yn vaiance ?2 

2.00 

2.10 

2.40 

2.50 

2.40 

1.36 

1.15 

1.44 

1.39 

1.71 

The estimated values, yn, are plotted in Figure 3 for n even, n = 16, 24, 

32, 40, 48. The exact values of En(N) for the smaller even degree polynomials, 
^ = 2,4,6,8,10 are also plotted. The asymptotic values (2/7r) log n of 

En(N) is also given in Figure 3. The exact and estimated values of En(N) 
reveal a log-like behavior as n increases even for small values of n. For 

n odd the behavior is similar. 

? 
log n 

Legend 
exact 

x estimated 

-L X _L 
30 40 50 60 Degree 

Fig. 3. Mean Numbers of Roots Exact and Estimated n even 

5. Partitioning the populations of polynomials 

If p(x) has N roots then ? 
p(x) and p(?x) have N roots. If # is a root of 

p(x) then Ifx is a root of the polynomial p(x) whose coefficients are those of p(x) 

in reverse order, so that p(x) also has N roots. Various combinations of these 

three transformations of a given polynomial p(x) lead to still other polynomials 

B2-7 
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having N roots : ? 
p(~x), ?p(x), p(?x), and ? 

p(?x). In our application 
the polynomials have coefficients of l's and ?l's. 

Further products of these transformations do not lead to other poly 
nomials in the population. In fact the situation may be conveniently described 

in algebraic terms as a group of transformations acting on the set S of all 

sequences of l's and ?l's of length n+l. The group T is a set of eight trans 

formations or mappings, ?0, tx, ...,t7, defined on the set S, ti : S-?S, where 

the group operation is composition of mappings, and, using the polynomial 
notation p(x) to denote a sequence of n+1 l's and ? 

l's, the ti are defined by 

tQp(x) 

hp(x) 
t2p(x) 

tsp(x) 

hP(x) 

t5p(x) 

t6p(x) 

t7p(x) 

n even n odd 

= 
p(x) identity same 

= ? 
p(x) changes sign of all coefficients same 

= 
p(?x) changes sign of all odd coefficients same 

= 
p(x) reverses order of coefficients same 

= 
?p(?x) changes of sign of even coefficients same 

= 
?p(x) reverses order and changes all signs same 

= 
p(?x) reverses order and changes same 

(odd) signs (even) 
? 

~P(~~~X) 
reverses order and changes 

same 

(even) signs (odd) 

Each element of this 8-element group is idempotent, i.e., ?^ 
= 

t0, the identity, 

for all i, so that each element is its own inverse. The complete multipli 

cation table for the group is; for n even : 

h 
h 
h 
h 
h 
h 
U 

ta U ta t? ?c fe 

tes Pc 

?3 ?4 

h 

tcz tR 

tn In 

*f\ te 

h 

h 

symmetric 

commutativity 

A population of 2n+1 polynomials, the set 8, is divided by the action of this 

group into subsets or orbits such that if p(x) e S is in an orbit, then tip(x) 
= 

q(x) 

is also in the orbit for all t^T. All polynomials within a common orbit under 

T have the same number of real roots. 
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For n odd and n > 2 there are the following cases : 

(i) p(x) symmetric, then p(x) 
= 

p(x), i.e., t3 
? 

t0 so that also t5 
= 

tl916 
= 

t2, 

t7 
== 

?4 and the orbit of p(x) consists of only 4 polynomials, namely : 

p(x) , ?p(x), p(?x), and ? 
p(?x). 

(ii) w/2 even, odd coefficients of p(x) symmetric while even coefficients 

are anti-symmetric, then p(x) 
= ? 

p(?x), i.e., ?3 
= 

?4 and the orbit of p(x) 
consist of 4 polynomials. 

(iii) n/2 odd, even coefficients of p(x) symmetric while odd coefficients 

are anti-symmetric, then p(x) 
= 

p(?x), i.e., ?3 
= 

t2 and the orbit of p(x) con 

sists of 4 polynomials. 

(iv) p(x) asymmetric in all three senses above, then p(x) is in an orbit 

of 8 polynomials. 

Thus a population of 2^+i polynomials consists of orbits of 8 or 4 whose 

members have the same numbers of real roots. Simple random sampling from 

the population can be performed more efficiently by simple random sampling 
of the orbits, provided orbits of 8 are given twice the probability of entering 
the sample as are orbits of 4. This will be the case if sampling is confined 

to a list of polynomials whose first two coefficients are identical, fixed at one 

of (1, 1), (?1, ?1), ( ?1, 1), (1, ?1). Suppose for concreteness, (1, 1) is chosen. 

It may be verified that in the resulting list of 2n~1 = 
2w+1/4 polynomials there 

are two representatives of each orbit of size 8 and one of each orbit of size 

4. Stratified random sampling would be carried out on a stratification of this 

list of 1/4 of the population of polynomials. 

As an illustration of the above theory, for ft = 5 the set S consists of 2n+1 
? 26 = 64 polynomials with 6 orbits of size 8 and 4 orbits of size 4. The 

following is a list of the sign sequences of the 64. In parentheses are the 

numbers of roots of each orbit as determined by numerical solution of the 

polynomials. 

(1) (1) (1) (3) (3) 

++++-+ +++-+ +++-++ ++-++- ++++ 
+ 

_ 
+-+- + +-+- + + + 

- 
+-+ + +- +-+ 

-+-+++ -+-++ ~+-+ -+++- -+_++_ 

+-++++ +-+++ ++-+++ -++-++ -++++ 

+++-+- + +-+- +-++- -+++- +++-+ 

-1_?h-+ + -+ 
- 

+ + H?+ +H-+ +-+ 
- 

+ 
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(1) (1) (1) (3) (1) 

+ + + + + - ++ + + + + + + +-+ + - 
+-+ +-+ + 

+ - + - + + +- + - 
+ - +- + + -+ +-+ +-h + - 

+-.-_ + 
_ 

+ _+ 
_ 

+-+ 
_ _ 

+ + + + 
_ _ 

+ +-+ 
- 

+ 
- 

+ 

-+ 
- 

+ 
- 
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