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Abstract Benford’s Law gives the expected frequencies of the digits in tabulated
data and asserts that the lower digits (1, 2, and 3) are expected to occur more fre-
quently than the higher digits. This study tested whether the law applied to two large
earth science data sets. The first test analyzed streamflow statistics and the finding
was a close conformity to Benford’s Law. The second test analyzed the sizes of lakes
and wetlands, and the finding was that the data did not conform to Benford’s Law.
Further analysis showed that the lake and wetland data followed a power law. The
expected digit frequencies for data following a power law were derived, and the lake
data had a close fit to these expected digit frequencies.

The use of Benford’s Law could serve as a quality check for streamflow data sub-
sets, perhaps related to time or geographical area. Also, with the importance of lakes
as essential components of the water cycle, either Benford’s Law or the expected
digit frequencies of data following a power law could be used as an authenticity and
validity check on future databases dealing with water bodies. We give several appli-
cations and avenues for future research, including an assessment of whether the digit
frequencies of data could be used to derive the power law exponent, and whether the
digit frequencies could be used to verify the range over which a power law applies.
Our results indicate that data related to water bodies should conform to Benford’s
Law and that nonconformity could be indicators of (a) an incomplete data set, (b) the
sample not being representative of the population, (c) excessive rounding of the data,
(d) data errors, inconsistencies, or anomalies, and/or (e) conformity to a power law
with a large exponent.
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Introduction

In the 1930s, Frank Benford, a physicist, noted that the first few pages of logarithm
tables appeared to be more worn than the later pages. From this he deduced that peo-
ple were looking up the logarithms of numbers with low first digits (such as 1, 2,
or 3) more often than numbers with high first digits (such as 7, 8, or 9). Based on
the results of his study of the digits in lists of numbers, and his assumed mathemat-
ical properties of numbers, he developed the expected frequencies of the digits in
lists of numbers. Under Benford’s Law the base 10 probability of a first digit j is
log10(1 + j−1), which implies that the first digit is a 1 about 30 percent of the time.
The objective of this paper is to (a) test the conformity of two large hydrology-related
data sets to Benford’s Law, and then to (b) consider the relevance and potential utility
of using Benford’s Law to assess the integrity and authenticity of earth science and
other geological data.

The Benford’s Law literature falls into two broad categories. These are papers that
either (a) advance the mathematical and statistical theory underlying the law or (b)
show a practical application in settings related to uncovering fabricated data. About
ten published papers have analyzed data sets that ranged in size from less than 100
records (“small”) to around 100,000 records. A recent study by Wallace (2002) used
four data sets with only 67 observations each. The data sets analyzed in past papers
were related to financial data at the micro level (for a single firm or organization) or
at the macro level (for a collection of firms), or to publicly available government or
capital markets (stock exchange) data (Nigrini and Mittermaier 1997; Nigrini 2005;
Wallace 2002; Ley 1996). In contrast, this paper analyzes two large data sets related
to surface hydrology.

The first data set relates to water flows at streamgage sites over an extended period
of time (1874 to 2004). This large data set had a near-perfect conformity to Benford’s
Law. The second data set analyzed was the global lakes and wetlands database. The
sizes of these water bodies did not conform to Benford’s Law, but the systematic
pattern of the digits suggested that these numbers were distributed according to a
power law. The Appendix derives the expected digit frequencies for data that follows
a power law and notes the special case when such data should follow Benford’s Law.

The conclusions are that data related to many hydrological phenomenon should
conform to Benford’s Law, and nonconformity could be indications of either (a) in-
complete data, (b) the sample not being representative of the population, (c) rounding
of the data, (d) data errors, (e) systematic biases in the data (rounding up or down to
create some effect), or (f) adherence of the data to a power law with an exponent not
near 1. Given the importance of hydrologic research to the development, manage-
ment, and control of water resources, the analysis of digit frequencies could assist in
assessing the accuracy, authenticity, and integrity of such data and thereby assist in
improving decisions based on archived data.
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Benford’s Law

Benford (1938) analyzed the digit patterns of 20 data sets with a total of 20,229
observations. His results showed that 30.6 percent of the numbers had a 1 as the
first digit, 18.5 percent of the numbers had a 2 as the first digit, with 9 being the
first digit only 4.7 percent of the time. The first digit of a number is the leftmost
non-zero digit; any minus sign or decimal point is ignored. Thus, the first digit of
both 2214 and 0.0025 is a 2. Benford then noticed the logarithmic pattern in the
actual digit frequencies and derived the formulas for the expected frequencies of the
digits in tabulated data. These are shown with J1 representing the first digit, and J1J2
representing the first-two digits of a number:

Prob(J1 = j1) = Log10(1 + 1/j1), j1 ∈ {1,2, . . . ,9}, (1)

Prob(J1J2 = j1j2) = Log10(1 + 1/j1j2), j1j2 ∈ {10,11,12, . . . ,99}. (2)

Equations (1) and (2) give the Benford’s Law formulas for the expected propor-
tions for the first digit and first-two digits. The expected proportions for the first,
second, third, and fourth digits are shown in Table 1. This study is concerned with
Benford’s Law to the base 10 only because the tabulated data that will be analyzed
is in base 10. The equations above can be converted to other bases, and Hill (1995)
expands upon this concept. In Table 1, from left to right, the digits tend towards being
uniformly distributed; this can easily be proved using Poisson summation.

A mathematical basis of Benford’s Law is that if the observations are ranked from
smallest to largest, they often approximate a geometric sequence. A geometric se-
quence with N terms is a sequence of the form

Sn = arn−1, n = 1,2,3, . . . ,N, (3)

where a is the first element of the sequence, and r is the ratio of the (n + 1)st el-
ement divided by the nth element. The geometric basis of the law was recognized

Table 1 The table gives the expected digit proportions of Benford’s Law for the digits in tabulated data
for the digits in the first four positions (Nigrini 1996). For example, the table shows that 30.103 percent of
the numbers are expected to have a first (leftmost) digit of 1

Position in number

Digit 1st 2nd 3rd 4th

0 0.11968 0.10178 0.10018

1 0.30103 0.11389 0.10138 0.10014

2 0.17609 0.10882 0.10097 0.10010

3 0.12494 0.10433 0.10057 0.10006

4 0.09691 0.10031 0.10018 0.10002

5 0.07918 0.09668 0.09979 0.09998

6 0.06695 0.09337 0.09940 0.09994

7 0.05799 0.09035 0.09902 0.09990

8 0.05115 0.08757 0.09864 0.09986

9 0.04576 0.08500 0.09827 0.09982
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by Benford himself in the second part of his paper titled “Geometric Basis of the
Law” (Benford 1938) and by Raimi (1976). Raimi (1976, p. 525) discusses the spe-
cial case where r is a rational power of 10. The conformity of a geometric sequence to
Benford’s Law depends jointly on the range of the data, the number of observations,
and r . Both Benford (1938) and Raimi (1976) discuss situations where conformity
to Benford’s Law is achieved by data that is asymptotically (approximately) geo-
metric, or where the data consists of a mixture of geometric sequences (interleaving
sequences). A recent proof of the geometric basis of the law by Leemis et al. (2000)
states: “Let W be a uniformly distributed random variable on the interval [a, b]. If
the interval (10a,10b) covers an integer number of orders of magnitude, then the first
significant digit of the random variable T = 10W satisfies Benford’s Law exactly.”

The probability distribution of all the digits of the possible values of T follows
Benford’s Law. T is a random variable, and just one number cannot be “Benford.”
Therefore, if b–a is an integer and the logarithms base 10 are equidistributed, then
the exponentiated numbers follow Benford’s Law. Diaconis (1976) provides an early
proof of this equivalence, whereas Kontorovich and Miller (2005) and Lagarias and
Soundararajan (2006) have recent results using this technique.

Benford noted that his probability law was derived from “events” through the
medium of their descriptive numbers, and that it was not a law of numbers in and
of themselves. Hill (1995) reviews the relationship between Benford’s Law for base
10 numbers and the application of the law to other bases. Pinkham (1961) shows that
Benford’s Law is scale invariant: starting with a Benford Set (a set of numbers that
conforms to Benford’s Law) and multiplying all the observations by a nonzero con-
stant, the new data set also follows Benford’s Law. Pinkham also showed that only
the frequencies of Benford’s Law have this property. This attribute of scale invari-
ance was noted by Raimi (1969), who stated that if a data set has non-Benford digit
frequencies, then multiplication by a constant never changes the data set to a Benford
set. The practical implication of the Pinkham theorem is if a Benford set is calibrated
in cubic feet per second and then restated in cubic meters per second, the restated data
set is also Benford. In the theorem by Leemis et al. (2000) noted above, if the random
variable T were multiplied by a nonzero constant 10x then the data would cover the
interval (10a+x,10b+x), which would still be an integer order of magnitude.

Prior research has analyzed financial data sets for conformity to Benford’s Law.
Nigrini (1996) showed that the digit frequencies of the interest amounts received on
91,022 tax returns for 1985 and 78,640 tax returns for 1988 had a close conformity
to Benford’s Law. The dollar amounts of 30,084 invoices approved for payment by
a NYSE-listed oil company (Nigrini and Mittermaier 1997) and the dollar amounts
of 36,515 invoices approved for payment by a software company (Drake and Ni-
grini 2000) also conformed to Benford’s Law. Nigrini (2005) analyzed the revenue
numbers from 4792 quarterly earnings releases in 2001 and 4196 quarterly earnings
releases in 2002. The first digits of the revenue numbers conformed to Benford’s Law.
However, the second digits showed a pattern (excess second digit 0’s and a shortage
of second digit 9’s) that was consistent with rounding up of revenue numbers around
psychological reference points, such as US $200 million. Financial data within and
across firms conforms reasonably well to Benford’s Law.
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Data Description and Analysis

Two sets of hydrological data were analyzed. The first set was streamflow data ob-
tained from the U.S. Geological Survey, and the second set was related to lakes and
wetlands. The analysis of the lakes and wetlands data showed that a relationship be-
tween Benford’s Law and the power law (often used to describe the relative sizes of
geological phenomenon) exists in nature.

Streamflow Data

Streamflow data was obtained from the U.S. Geological Survey (USGS) website.
The agency’s website lists many programs, including the National Streamflow In-
formation Program (NSIP). Under this program the USGS operates and maintains
approximately 7300 streamgages which provide data for many diverse users. There
are several reasons for the collection of accurate, regular, and dependable streamflow
data:

• Interstate and international waters—interstate compacts, court decrees, and inter-
national treaties may require long-term, accurate, and unbiased streamflow data at
key points in a river.

• Streamflow forecasts—upstream flow data is used for flood and drought forecast-
ing by the National Weather Service for improved estimates of risk and impacts
for better hazard response and mitigation.

• Sentinel watersheds—accurate streamflow data is needed to describe the changes
in the watersheds due to changes in climate, land and water use.

• Water quality—streamflow data is a component of the water quality program of
the USGS.

• Design of bridges and other structures—streamflow data is required for water level
and discharge during flood conditions.

• Endangered species—data is required for an assessment of survival in times of low
flows.

The methods employed for measuring flow at most streamgages are almost iden-
tical to those used 100 years ago. Acoustic Doppler technology can widen the range
of conditions for which accurate flow measurements are possible, but is not yet seen
as providing enhanced efficiency or accuracy at most locations. New technology has
yet to be developed to provide more accurate data over a wide range of hydrologic
conditions, and more cost-effective than the traditional current meter methods.

The data for this study was obtained from the Surface–Water Data for the Nation.
The data used was the annual data Calendar Year Streamflow Statistics for the Nation.
To obtain a large data set the only condition that was imposed was that the period
of record included calendar year 1950 or later. The data consisted of all the annual
average readings for any site that had an annual average recorded in any of the years
from 1950 to 2005. The only sites that were excluded were sites that only had data
for the pre-1950 period. The fields downloaded were: (a) agency code, (b) USGS
site number, (c) calendar year for value, and (d) annual mean value in cubic feet per
second. Summary statistics are shown in Table 2.
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Table 2 The table describes the annual streamflow data used in the study. The data pertained to U.S. rivers
and streams and was obtained from the U.S. Geological Survey’s website (http://www.usgs.gov/)

Description Amount Units

Number of observations from download 459,778 Records

Number of observations equal to zero 1,706 Records

Number of observations with a negative flow 108 Records

Number of null (blank) observations 1 Records

Number of usable observations 457,963 Records

Statistics for usable observations:

Number of duplicate records 523 Records

Number of sites with duplicate records 12 Sites

Number of observations after deletion of duplicates 457,440 Records

Statistics of used observations:

Number of unique sites 17,822 Sites

Highest record count for a single site 130 Records

Lowest record count for a single site 1 Record

Average count for each listed site 25.7 Records

Latest year on record for any site 2004 Calendar year

Earliest year on record for any site 1874 Calendar year

Year with the highest record count 1967 Calendar year

Year with the lowest record count 1874 Calendar year

Minimum flow for any single site year 0.001 Cubic feet per second

Quartile 1 34.8 Cubic feet per second

Quartile 2 (median) 166.0 Cubic feet per second

Quartile 3 674.0 Cubic feet per second

Maximum flow for any single site year 980,900.000 Cubic feet per second

Average flow over all records 2,199.087 Cubic feet per second

The downloaded data included some duplicate records for calendar year and an-
nual mean value. An inspection of the duplicates showed that only the agency code
differed between the duplicates. For example, one duplicate showed the agency code
to be USIBW and another identical record showed the agency code to be USGS. The
deletion of the duplicates ensured that any site and year would be used only once in
the analysis.

An analysis of the 1706 zero flows showed that there were 495 sites that had a
zero recorded for 1 or more years and that zero flows occurred in 80 different years
indicating that this phenomenon was not restricted to a certain period of time. There
were 199 sites that had a zero recorded for only one year and 296 sites that had zeroes
recorded for more than one year. The results suggested that the zeroes were not data
errors, but that the rivers either dried up or were diverted around the location of the
original streamgage. The zeroes were ignored in the data analysis because they are
essentially a non-event. In contrast, the 108 negative numbers did seem to be data
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Fig. 1 The graph shows the
first-two digit proportions of the
streamflow data and the
expected proportions of
Benford’s Law

errors thereby confirming the importance of data cleansing prior to analyzing the
data.

The number of observations remaining after deletion of the null values, zeroes,
negative numbers and duplicates was 457,440 records. This data set was particularly
interesting because (a) the period covered is 130 years and it is rare for any data
set to cover such an extended period, (b) the data set was the largest analyzed in
the Benford’s Law literature to date, (c) the range in streamflows indicated that the
sites covered everything from the smallest streams to the largest waterways, (d) the
measurement technology has been unchanged over the entire period, which suggests
that there are no distortions due to technological changes, and (e) the data set is used
for a variety of important purposes.

Most of the prior Benford’s Law studies analyzed the first or second digits of the
data under scrutiny. In this study the first-two digits are analyzed (see (2)) because the
first-two digits reveal data anomalies that would be missed with an analysis of only
the first or second digits. For example, the 47, 48 and 49 might all be overstated by x

percent and if the 41, 42, and 43 are also all understated by x percent, then the first
digit 4 would have an actual proportion that closely matched the expected proportion.
However, an analysis of first-two digits would highlight these deviations which would
present a more accurate assessment of the digit frequencies. The first-two digits of
the streamflow numbers are shown in Fig. 1.

The graph shows the expected proportions of Benford’s Law as a smooth
monotonically decreasing line from 0.41 to 0.044. The actual proportions are shown
as vertical bars. There are 90 bins and on average each bin is about 0.011. The visual
fit to Benford’s Law is excellent with a Mean Absolute Deviation (average of |Actual
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Fig. 2 The graph shows the
ordered values of the logs (base
10) of the streamflow data with
each of the 457,440
observations representing the
average annual flow at a USGS
monitoring station together with
a fitted regression line

− Benford’s Law|) of 0.00013. The low Mean Absolute Deviation means that, on
average, the deviation of the actual percentage from that of Benford’s Law was one-
tenth of one percent. A visual review of the graph shows no sign of the “overs” or
“unders” being clustered in certain parts of the graph, nor are any of the overs or
unders systematic by occurring, for example, at multiples of 10 (10,20,30, . . . ,90).
The near-perfect visual fit to Benford’s Law suggests that the data is consistent with
the geometric pattern (or a combination of interweaving geometric series) assumed
by Benford’s Law. To further explore the anatomy and structure of the data, the base
10 logarithms of the ordered values were graphed. A regression line was fitted with
the predictor variable (X) being Rank (1 to 457,440) and the response variable (Y)

being the logarithm of the annual flow.
Figure 2 shows the graph of the logs of the annual flow data and the regression

line obtained by regressing the logarithm of the streamflow on the Rank. The R-
squared value is 0.918. The first intersection between the actual and the fitted line is at
Rank = 36,139 and the last intersection between the two lines is at Rank = 428,359.
This means that about 85.7 percent of the observations are very “close” to the fitted
line. If all the observations were “close” to the fitted line then this would indicate
that the data could be described as a single geometric series with a constant ratio r .
The graph seems to be made up of three (connected) lines with three different slopes
which suggests that the data comes from three successive geometric series, and that
the “average” result is that the logs modulo 1 are equidistributed. A formal test of the
mantissas (the fractional part of the logs) is presented in Fig. 3.

Figure 3 shows a plot of the ordered values of the mantissas. The graph also shows
a plot of a regression line using the following equation

Yi = −(1/N) + (1/N) · Rank, i = 1,2,3, . . . ,N, (4)
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Fig. 3 The graph shows the
ordered values of the mantissas
of the streamflow data plotted as
a solid line using the left-hand
side Y -axis for the values. A
fitted line showing a set of
mantissas uniformly distributed
over the [0,1) interval is shown
as the dotted line using the
right-hand side Y -axis for the
values

where N equals the number of observations (457,440). The line described in (4)
is the line that would result from the mantissas distributed at 0/N,1/N,2/N, . . . ,

(N − 1)/N , which would be close enough to being equidistributed for all practical
purposes. The two lines are both straight lines from 0 to 1, implying that the man-
tissas are equidistributed and that the data conforms closely to Benford’s Law. The
close level of conformity to Benford’s Law is also clear from the digit frequencies
presented in Fig. 1. The near-perfect fit of the streamflow data to Benford’s Law is
the closest fit of any set of natural data (as opposed to simulated data) to Benford’s
Law in the literature.

This data set is particularly interesting because while the fit is visually appealing,
it is not a perfect fit to Benford’s Law. We explore the results in more detail to set the
stage for the analysis of the lake data and to offer some guidance to other researchers
investigating archived earth science and other geological data. The first set of tests
relates to the goodness of fit to Benford’s Law, while the second set of tests relates to
the internal structure of the data.

Goodness of Fit Tests

The chi-square test was used to measure the goodness-of-fit to Benford’s Law. For
the first-two digits (with i from 10 to 99) the computed value of the chi-squared
statistic was 122.595. The critical point of the chi-square distribution with 89 degrees
of freedom and a right-hand tail area of α = 0.05 is 112.02, and the test therefore
calls for a rejection of the null hypothesis and the data conforms to Benford’s Law;
however, the critical point for a right-hand tail area of α = 0.01 is 122.94, and thus
the test would not call for a rejection of the null hypothesis at the 99% confidence
level. A second goodness-of-fit test employed was the Kolmogorov–Smirnov test.
The calculated D-statistic (maximum difference between the actual and expected
distribution functions) was 0.0017, which was compared to the critical value at α =
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Fig. 4 The figure shows the
counts of the streamflow data in
the form of a histogram. Each
bar covers a range of 50 cubic
feet per second. The counts for
values above 5000 cubic feet per
second are small and are not
shown on the figure

0.05 of 1.36 · √
N = 0.0020. At α = 0.05 the evidence is not persuasive enough to

reject the null hypothesis that the data conforms to Benford’s Law. The goodness-of-
fit tests therefore indicates that at an α of 0.05, the null hypothesis of conformity is
narrowly rejected by the chi-square test and narrowly accepted by the Kolmogorov–
Smirnov test (and not rejected by a chi-square test at an α of 0.01).

Given the narrow margins for the reject/accept goodness-of-fit decisions, we per-
formed a runs test to investigate whether the overs and unders were randomly distrib-
uted for the first-two digits. For each of the 90 bins, an over occurs when the actual
proportion exceeds that of Benford’s Law, and an under represents the converse. Let-
ting n1 denote the number of overs, n2 the number of unders, and u the number of
runs of overs and unders (for example, the sequence ‘over over under under under
over under over’ has 5 runs), there were u = 38 runs with n1 = 48 and n2 = 42.
As n1 and n2 are larger than 30, u should be approximately normally distributed. The
computed value of the Z-test statistic was −1.661 which is less than the cutoff of 1.96
(at α = 0.05) indicating that the overs and unders do not have a systematic pattern.

Given (a) the narrow margins for the goodness-of-fit tests, (b) the results of the
lake data tests, and (c) the observation by DeGroot and Schervish (2002) that prior to
summarily rejecting the null hypothesis in cases where the sample size is large (due
to small differences having a high impact on the calculated statistics), the statistician
should consider other plausible distribution functions with which the sample provides
a closer agreement. The final test was whether the data follows a power law, and
whether this could be the cause of the (admittedly small) deviations from Benford’s
Law. A histogram was plotted to see whether it had the properties expected for a
power law.

Figure 4 shows a histogram of the counts of the streamflow values in bins with a
range of 50 cubic feet per second up to 5000 cubic feet per second. The histogram
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shows a pattern consistent with data following a power law. The next step in the analy-
sis was to calculate the power law exponent. This was done following the methodol-
ogy in Newman (2005), which provided an excellent review of power laws and the
Pareto distribution. A power law has the density function

fa,b,m(x) = C(a, b,m)x−(m+1) for x in [a, b] and 0 otherwise, (5)

where the range [a, b] is restricted such that [a, b] = [10k,10n], with k and n integral,
and m + 1 the exponent. We use this form of the exponent as it simplifies future
formulas (see the Appendix); m = 0 corresponds to Benford behaviour.

Given the range of the streamflow data (0.001 to 980,900), the values of k and n

are −3 and 6, respectively. Newman (2005) gives a simple and reliable method for
extracting the exponent using

m + 1 = 1 + N

[
N∑

i=1

ln(xi/xmin)

]
, (6)

where the quantities xi , i = 1, . . . ,N , are the measured (observed) values of x, and
xmin is the minimum value of x. Using (6), the power law exponent was calculated
to be 1.084 (giving m = 0.084). The error estimate for m + 1 is difficult to calcu-
late since this needs to be done using a standard bootstrap or jackknife resampling
method, and also because the equation is really only valid for the range over which
the power law is expected to hold. For example, the density in (5) cannot hold for
arbitrarily large values of x if m ≤ 0. The calculated exponent is close to, but not
exactly equal to, 1; the digit bias is Benford if and only if the exponent is 1. If the
exponent is not 1, then this is a possible explanation for the small differences between
the actual and expected digit distributions of the streamflow data, as evidenced by the
narrow reject/accept goodness-of-fit test results. The relationship between data fol-
lowing a power law with an exponent not equal to 1 and the expected frequencies of
Benford’s Law is explored further in the next sections and the Appendix. A second
explanation for the differences could be that even though the sample size is large,
the data set might not be a perfect representation of streamflow statistics. The sample
might be biased because the measuring stations are not perfectly randomly dispersed
throughout the waterways of the United States. Although the conformity of this large
streamflow data set is not perfect, the conclusion is that the fit is excellent for all
practical purposes.

Lake and Wetlands Data

The data was obtained from the global lakes and wetlands database (GLWD) devel-
oped by the Center for Environmental Systems Research at the University of Kassel.
This database is described in detail in Lehner and Döll (2004). The data analyzed
was for large lakes and reservoirs, and smaller water bodies (GLWD-1 appended to
GLWD-2). The data provided statistics on 248,613 water bodies.

Lehner and Döll (2004) include a review of the importance of knowledge about
water bodies. There are issues in defining exactly what constitutes a lake. For exam-
ple, for lakes adjacent to the sea (also called lagoons) the distinction between slow-
moving rivers and lakes may be ambiguous. There may also be a continuum between
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Table 3 The table describes the lake, river, and reservoir data used in the study. The data was obtained
from the global lakes and wetlands database (GLWD) developed by the Center for Environmental Systems
Research at the University of Kassel

Description Amount Units

Number of observations from download 248,613 Records

Number of observations used 248,613 Records

Classifications:

Lakes 246,135 Units

Rivers 1656 Units

Reservoirs 822 Units

Perimeter Statistics

Minimum perimeter 1.0 Kilometers

Quartile 1 4.0 Kilometers

Quartile 2 (median) 5.6 Kilometers

Quartile 3 9.3 Kilometers

Maximum perimeter 36,641.2 Kilometers

Average perimeter over all records 14.6 Kilometers

Area Statistics

Minimum area 0.1 Square kilometers

Quartile 1 0.9 Square kilometers

Quartile 2 (median) 1.5 Square kilometers

Quartile 3 3.1 Square kilometers

Maximum area 378,119.3 Square kilometers

Average area over all records 12.2 Square kilometers

lakes and wetlands. The authors define lakes to be permanent still water bodies (lentic
water bodies) without a direct connection to the sea, but they accepted saline lakes
and lagoons (but not lagoon areas) as lakes, and also manmade reservoirs. Their data-
base excluded intermittent or ephemeral water bodies. The database was restricted to
lakes with an area greater than 0.1 km2 (1 hectare).

Table 3 shows that 99 percent of the water bodies are lakes. All the records in
the database were included in the analysis to keep the data set consistent with prior
studies that have used this data, and for consistency with possible future studies. The
perimeter field had values ranging from 1 km to 36,641 km. For the perimeter data,
the first and third quartile values of 4.0 and 9.3, respectively, show that close to 50
percent of the lakes had perimeters from 4.0 to 9.3 km. The data is strongly positively
skewed. The area of the lakes is also strongly positively skewed with 29.6 percent of
the lakes having areas under 1 km2 and 31.4 percent of lakes having areas in the 1.0
to 1.9 km2 range.

The first-two digit patterns of the perimeter numbers are shown in Fig. 5; the data
does not conform to Benford’s Law. For the first-two digits, the computed value of
the chi-squared statistic was 88,120, exceeding the α = 0.05 critical point of the chi-
square distribution with 89 degrees of freedom by a large margin. The test calls for
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Fig. 5 The graph shows the
first-two digit proportions of the
lake perimeter data and the
expected proportions of
Benford’s Law

a rejection of the null hypothesis that the data conforms to Benford’s Law. Using the
Kolmogorov–Smirnov test, the calculated D-statistic (the largest difference between
the actual and expected distribution functions) was 0.2619, exceeding the α = 0.05
critical value of 1.36 · √N = 0.0027 by a wide margin. Finally, as expected with the
overs (n1) and unders (n2) clustered into clear groups, the runs test showed that there
were 3 runs with n1 = 52 and n2 = 38. The computed value of the Z-statistic was
−9.109, far greater than the cutoff of 1.96 (at α = 0.05). This indicates that the overs
and unders had a systematic pattern.

The distribution of the perimeter values in Table 4 suggests that the data set starts
with lakes that are 3.0 km or larger and indicates that the range of 3.0 to 4.9 km
dominates the data. Slightly over one-third of the lakes have perimeters in the 3.0 to
4.9 km range. The non-Benford digit patterns confirm that the data set has a minimum
value of 3. There are some lakes with perimeters <3, but these are relatively few in
number. One possible reason for the non-Benford behaviour could be the lack of a
clear definition of a lake. The fractal nature of the perimeters of lakes might play
some part in accurately measuring the perimeters. Another possible explanation is
that perimeter is not a correct measurement for the size of a lake. The next step was
to analyze the digit patterns of the surface areas of lakes since these might provide a
better measurement of size.

Figure 6 shows the first-two digit patterns of the surface areas of the 248,613
lakes. The data does not conform to Benford’s Law given a Mean Absolute Deviation
(average of |Actual−Expected|) of 0.0071. On average, the actual proportion differed
from the expected proportion by seven-tenths of one percent. The largest deviations
occurred for the high round value combinations (50, 60, 70, 80 and 90). The chi-
square test produced an even larger test statistic (at 544,735) than for the perimeters,
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Table 4 The table shows the number and percentages for the lake perimeter values in the GLWD data set
in increments of 1 km, from 1 km to 10 km, with the final row showing the count and percentage for lakes
greater than or equal to 10 km. Perimeter values were rounded to one-tenth of one km

From (km) To (km) Count Percentage

1.0 1.9 1,055 0.42

2.0 2.9 7,792 3.13

3.0 3.9 49,887 20.07

4.0 4.9 42,911 17.26

5.0 5.9 31,140 12.53

6.0 6.9 22,108 8.89

7.0 7.9 16,212 6.52

8.0 8.9 11,926 4.80

9.0 9.9 9,266 3.73

10.0 36,641.2 56,316 22.65

Total 248,613 100.00

Fig. 6 The graph shows the
first-two digit proportions of the
lake surface areas and the
expected proportions of
Benford’s Law

but the Kolmogorov–Smirnov test statistic was lower at 0.0635. The null hypothesis
of conformity was still soundly rejected by both tests. The runs test also rejected the
null hypothesis of a random distribution since the overs (n1) and unders (n2) were
clustered into clear groups. The test showed that there were 18 runs with n1 = 17
and n2 = 73 giving a computed value of the Z-statistic of −3.686, which was again
greater than the cutoff of 1.96 (at α = 0.05).

A review of the data showed that 29.61 percent of the values were less than 1.0.
These values were recorded to one decimal place only and were therefore recorded as
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Fig. 7 The figure shows the
ordered values of the logs (base
10) of the 248,613 lake surface
areas from the GLWD data. The
straight line is the fitted
regression line. The horizontal
“steps” evident in the first
100,000 data points show that
there are many observations
with the same numeric values

0.1,0.2,0.3, . . . ,0.9. The values from 0.1 to 0.9 were given imputed first-two digit
values of 10,20,30, . . . ,90 since 0.1 can be written as 0.10 and 0.2 can be written
as 0.20. These <1 values were so numerous that they distorted the digit patterns.
The round first-two digit values (10 through 90) were not true 10s,20s,30s, . . . ,90s,
but occurred because the data was rounded. For example, the area could have been
calculated to be 0.481957 km2 and then rounded to 0.50 km2. This small amount of
rounding would not only change the second digit to a 0 but would also change the
first digit. The <1 values were deleted to explore the patterns of the remaining values.
Prior to this (to further explore the structure of the data), the logarithms (base 10) of
the numbers were calculated and graphed similar to what was done for the streamflow
data.

The graph in Fig. 7 shows the ordered values of the lake areas and shows a similar
pattern to that of Fig. 2. The left side of the curve has more of a curve to it and several
horizontal steps can be seen. These horizontal steps indicate that there are runs with
equal values causing sections of the line to have a slope of zero. The basic shape of
the lake area graph is similar to the streamflow graph and yet the streamflow data
conformed more closely to Benford’s Law. The next step was to separate the rounded
values (<1) from the remainder and then to investigate separately the values greater
than 1. The digit frequencies of the areas ≥1 are shown in Fig. 8.

The digit frequencies of the lake areas ≥1.0 km2 in Fig. 8 show a smooth pattern.
There is a pronounced skewness, and the downward sloping curve of the actual pro-
portions is more extreme than that of Benford’s Law. The Mean Absolute Deviation
of 0.0052 is less than that for Fig. 6. As compared to the complete set of lake areas,
the chi-square test statistic was smaller at 49,165, but the calculated test statistic for
the Kolmogorov–Smirnov test was about four times larger at 0.2341. Again the null
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Fig. 8 The graph shows the
first-two digit proportions of the
lake surface areas for those areas
≥1.0 and the expected
proportions of Benford’s Law

hypothesis of conformity was soundly rejected by both tests. The runs gave an inter-
esting result when testing the null hypothesis of a random distribution, given the overs
(n1) and unders (n2) were again clustered into clear groups. There were 2 runs with
n1 = 19 and n2 = 71, giving a computed value of the Z-statistic of −9.275, which
was again far greater than the cutoff of 1.96 (at α = 0.05) and about three times as
large as the test statistic for the full lakes data set.

Power Law Association

To further investigate the internal structure of the data, a histogram was constructed
and the results are shown in Fig. 9.

Figure 9 is a histogram of the lake areas with the area (1 km2 ≤ area < 1,000
km2) plotted on the X-axis and the count on the Y -axis. There were only 236 lakes
with an area >1,000 km2. The axes in Fig. 9 were plotted on logarithmic scales. The
negative slope of the line coupled with the “noisy” results on the right hand side is
an almost perfect representation of data that follows a power law. The value of the
exponent (m+ 1) was calculated using (6) with an xmin = 1 giving a calculated value
of 1.941. The Appendix shows that it is only with an exponent approximately equal
to 1 (m = 0) that the data will conform to Benford’s law. The Appendix also includes
an expectation for the first and first-two digits for data that follows a power law for
exponents (m + 1) > 1.

The penultimate test was to test for a systematic pattern to the ordered values
of the mantissas of the power law data and these results are shown in Fig. 10. If
the data conformed to Benford’s Law, then the mantissas would follow the path of
the regression line plotted using (4) with N = 175,009 (the count for areas greater
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Fig. 9 The figure shows a plot
of the lake areas (from 1 to
1000 km2) and the counts for
these values on a logarithmic
scale

Fig. 10 The figure shows the
ordered values of the mantissas
of the lake surface areas for
areas greater than or equal to
1.0 km2. Also shown is a
straight line representing a
uniform distribution over the
[0,1) interval and a fitted line of
a cubic equation with
Y = a + bX + cX2 + dX3 fitted
to the actual mantissa values

than 1). The results show that the actual plot of the mantissas follows a curved path
from 0 to 1, indicating that the mantissas are not equidistributed. The visible “steps”
in the graph occurred because there were many numbers that were repeated (e.g.
1.0 and 1.1) and the repeating numbers have equal mantissas. The mantissas seem
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Fig. 11 The graph shows the
first-two digit proportions of the
lake surface areas for those areas
≥1.0 and the expected
proportions of data distributed
according to a power law with
an exponent of 1.941

to follow a pattern that could be approximated with a cubic equation of the form
Y = a + bX + cX2 + dX3. A cubic line was fitted using regression and the fitted
line is shown in Fig. 10. The fact that there was a systematic pattern to the ordered
mantissas and to the digit patterns of the power law data suggested that a functional
form for the expected digit patterns could be derived for m > 0. Results are shown in
the Appendix.

The final test for the lake areas ≥1 was to test the actual first-two digit frequencies
against the expected first-two digit frequencies for a power law data using the theorem
in the Appendix. The results are shown in Fig. 11.

Figure 11 shows the actual first-two digit frequencies of the lake areas ≥1 and the
expected first-two digit frequencies of data distributed according to a power law with
an exponent of 1.941 using the theorem in the Appendix. The fit is a visually close fit.
The differences could be due to a number of issues. The exponent of 1.941 was cal-
culated for data in the [1,1000] range whereas the graph shows the digit frequencies
for all lakes ≥1 km2. The analysis was done for all lakes ≥1 to allow for compar-
isons between future research studies on lake areas using the GLWD database and for
researchers using the same data source for other purposes. Also, there is no perfect
method for calculating the exponent for the data that follows a power law. Finally, the
differences could also result from the data not following a power law exactly over the
entire [1,1000] range, or it could signal some issues in measuring the areas of lakes.
The following section reviews and discusses the findings related to the lake data.
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Discussion of Power Laws and Digit Frequencies

The Appendix shows that a data set characterized by a power law with exponent m+1
will tend towards having the digit frequencies of Benford’s Law if m is small. As m

increases, provided that the range of the numbers approximates a = 10k and b = 10n

for integers k and n, the digit patterns are more skewed than for Benford’s Law. The
Appendix concludes with a theorem giving the explicit expected digit frequencies for
data following a power law for any m.

Power laws are known to describe the relative sizes of many natural phenomena
and Newman (2005) reviews many diverse instances of data conforming to power
laws including earthquake magnitudes, crater diameters, peak gamma ray intensities
of solar flares, and the numbers of species in biological taxa. Newman’s calculated
exponents α generally ranged from 2.0 to 3.5.

Results from Fig. 11 suggests future research could investigate the formal ques-
tion as to whether digit frequencies could be used (a) to confirm that data follows a
power law, (b) to estimate the exponent of the power law, and (c) to assist researchers
in confirming the range over which the power law holds true. Researchers could also
analyze the digit patterns of data known to follow a power law to assess what types
of data integrity issues (e.g. such as incomplete data sets or errors in the measuring
apparatus used) could be detected. Finally, if a coherent and extensive body of knowl-
edge is developed, the digit frequencies might even give rise to researchers being able
to suggest correction factors (data subset N1 appears to be under- or overstated by y

percent) for data that is inherently difficult or costly to measure precisely.
The practical uses of such research could be that researchers evaluating earth sci-

ence and other geological data might be able to use the digit frequencies to assess
data authenticity issues. This topic is highly relevant given the recent issues that have
surfaced in stem cell research (The Economist 2006). If the digit frequencies do not
follow the expected patterns then such analyses might support conclusions that the
data is possibly (a) highly rounded, (b) incomplete, (c) biased (evidenced by exces-
sive rounding upwards or downwards, usually found by an examination of second
or later digits), or (d) subject to intentional or unintentional errors. Furthermore, the
analysis of digit frequencies and the distribution of the logarithms could also shed
additional light on the internal structure of the data by providing insights that are not
apparent from summary statistics such as the mean, median, and standard deviation.

Conclusions

Benford’s Law provides the expected digit frequencies for data sets describing many
diverse natural phenomena. To date there have been relatively few papers that have
analyzed the digit patterns of actual data. Most of these papers have dealt with fi-
nancial data. The objective of this paper was to analyze the digit frequencies of two
large data sets related to surface hydrology and thereafter to comment on the possi-
ble utility of the results for researchers analyzing earth sciences and other geological
data.

The first data set analyzed was annual average flows at streamgage sites through-
out the U.S. over an extended period of time (1874 to 2004). This large data set of
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457,440 records had a near-perfect conformity to Benford’s Law. The second data set
analyzed was the global lakes and wetlands database (GLWD) with 248,613 records
on lakes, rivers, and reservoirs. The perimeters of the water bodies did not conform
to Benford’s Law. The areas of the lakes also deviated from the expected patterns of
Benford’s Law, but the systematic pattern of the digits indicated that these numbers
were distributed according to a power law. This paper showed that, under certain cir-
cumstances related both to the power law exponent and the range of the data, there
was a close conformity to Benford’s Law. Under other circumstances the fit would
be weak. Several avenues for future research related to the relationship between data
conforming to a power law and the expected digit patterns for such data exists. These
avenues include using the digit frequencies to ascertain the range for which the power
law is valid and using the frequencies to examine data authenticity and data integrity
issues.

From a practical perspective the streamflow results suggest that data related to
water bodies should conform to Benford’s Law. Nonconformity could be indicators
of either (a) an incomplete data set, (b) excessive rounding of the data, (c) data errors,
or (d) adherence of the data to a power law with a high value for the exponent. Given
the importance of the streamflow data for flood prediction, adherence to interstate
covenants, bridge construction, and the preservation of endangered species, the use
of Benford’s Law can serve as a quality check for subsets (perhaps related to time
or geographical area) of the data. Lakes are essential components of the hydrological
and biogeochemical water cycles with influences on many aspects of ecology, the
economy, and human welfare. Either Benford’s Law or the expected digit frequencies
of data following a power law could be used as a validity check on future generations
of databases containing data related to water bodies.
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Appendix Relationship Between Benford’s Law and Power Laws

Consider a power law with density fa,b,m(x) = C(a, b,m)x−(m+1) for x in [a, b]
and 0 otherwise. The admissible values of a (which can be zero) and b (which can
be ∞) depend on the exponent m. To ensure that the integral of fa,b,m(x) is fi-
nite, if m ≤ 0 then b < ∞, while if m ≥ 0 then a > 0. The normalization constant
C(a, b,m) is easily computed; it is 1/ log(b/a) if m = 0,m/(a−m − b−m) if m > 0,
and |m|/(b|m| − a|m|) if m < 0.

Power law distributions are related to Benford’s Law. Let Y be a random variable
with density given by a power law with m = 0, a = 10k and b = 10n (for integers k

and n). The distribution of the digits of Y base 10 are Benford. This immediately fol-
lows from studying the density on intervals [10j ,10j+1). As each such interval has
probability log(10)/C(10k,10n,0) = 1/(n−k), it is sufficient to consider the special
case when n = k + 1. In this case, the normalization constant is log(10) and the prob-
ability of observing a first digit of d is (log(d · 10k) − log((d + 1) · 10k))/ log(10) =
log10(1+d−1), which is the Benford probability. If [a, b] is not of the form [10k,10n]
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for some integers k and n, then while there will be digit bias, it obviously cannot be
Benford. For example, if [a, b] = [2,4] then the first digit can only be a 2, 3 or a 4!
While the distribution is not Benford, in a restricted sense it will have Benford behav-
iour. In this case, the ratio of the probability of a first digit of 2 versus a first digit of
3 is log(3/2)/ log(4/3), exactly the same answer for Benford’s Law. Unfortunately,
such a property will not hold for all intervals (consider [a, b] = [1,30]).

Let Y be a random variable with density given by the power law fa,b,m(x). As-
sume m �= 0 and [a, b] = [10k,10n] (with k and n integers, k possibly equal to −∞
or n equal to ∞). If m is small, then the distribution of digits of Y will be close to
Benford’s Law. This follows from continuity of integration of continuous functions.
For example, consider [a, b] = [10j ,10j+1] with j an integer, and let m be a small
positive number; the case of negative m is handled similarly (and yields the same
formula). The difference in the probability of a first digit of d is given by integrating
f10j ,10j+1,m(x) − f10j ,10j+1,0(x) from d · 10j to (d + 1) · 10j . Simple algebra shows
the integral of f10j ,10j+1,m(x) is

d−m ·
(

1 −
(

d + 1

d

)−m)/(
1 − 10−m

)
.

As m → 0 through positive values, d−m tends to 1, and by L’Hospital’s rule (remem-
ber we differentiate with respect to m) and the change of base theorem for logarithms

lim
m→0

(
1 −

(
d + 1

d

)−m)/(
1 − 10−m

)

= lim
m→0

(
m log

(
d + 1

d

)
·
(

d + 1

d

)−m/
m log(10) · 10−m

)

= Log10

(
d + 1

d

)
lim
m→0

(
d + 1

10d

)−m

= Log10
(
1 + d−1).

This is the Benford probability. We find from integrating f10j ,10j+1,0(x), a similar
result holds if m is negative and small. We therefore conclude that, if m > 0 is small
and [a, b] = [10j ,10j+1], then the difference from Benford’s Law for observing a
first digit of d is

d−m ·
(

1 −
(

d + 1

d

)−m)/(
1 − 10−m

) − log10

(
d + 1

d

)
. (7)

As remarked earlier, this tends to zero as m tends to 0. Further, note the above quan-
tification of the deviation from Benford’s Law is independent of j . Thus writing[

10k,10n
] = [

10k,10k+1] ∪ [
10k+1,10k+2] ∪ · · · ∪ [

10n−1,10n
]
,

we see (7) also holds for the difference from Benford’s Law for the interval [a, b] =
[10k,10n], and gives the base 10 digit bias for a power law with positive exponent m

covering an integral number of orders of magnitude. Similar integration and algebra
yields analogues of (7) for negative m. Results indicate the following assertion.
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Theorem 1 Let T be a random variable with the density given by a power law.
The density is fa,b,m(x) = C(a, b,m)x−(m+1) for x in [a, b] and 0 otherwise, where
C(a, b,m) is 1/ log(b/a) if m = 0, m/(a−m − b−m) if m > 0, and |m|/(b|m| − a|m|)
if m < 0. If [a, b] = [10k,10n], then:

• If m does not equal 0, then the probability of the first digit of T (base 10) equaling
d in {1, . . . ,9} is d−m · (1 − (d + 1/d)−m)/(1 − 10−m); if m equals 0, then the
probability of the first digit of T (base 10) equaling d is log10(1 + 1/d).

• If m does not equal 0, then the probability of the first-two digits of T (base 10)
equaling d1d2 in {10, . . . ,99} is (d1d2/10)−m(1 − ((d1d2 + 1)/d1d2)

−m)/(1 −
10−m); if m equals 0, then the probability of the first-two digits of T equaling
d1d2 is log10(1 + 1/d1d2).
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