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with area k. For k = 1, their solution leads to the triangle (5/3, 17/6, 3/2), which is much simpler than
the one given above. Other solutions for k =1, suggested by the referee, are (1/2, 13/3, 25/6) and
(17/30, 4, 113/30).

We can introduce a second parameter in any solution

a=f(k), b=g(k), c=h(k)
by replacing k by km? where m is any positive rational, and then dividing by m. Thus we get
' = _1_ 2 r— i 2 r— _1_ 2
a —mf(km ), b mg(km ), ¢ = h(km?).

For example, (26) above leads to

Sk’m*—4km®+4 km(k’m*—4km>+20) km>+2
m(k’m*-4) 2(k*m*-4) o 2m

27)
Of course, this device can be used only once.
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THE FIRST DIGIT PROBLEM
RALPH A. RAIMI

1. Introduction and notation. It has been known for a long time that if an extensive collection of
numerical data expressed in decimal form is classified according to first significant digit, without
regard to position of detimal point, the nine resulting classes are not usually of equal size. Indeed,
while a truly random table should show a frequency of 1/9 for the occurrence of a given first digit p
(p=1,2,...,9), many observed tables give a frequency approximately equal to log:o(p + 1)/p. Thus
the initial digit 1 appears about .301 of the time, 2 somewhat less and so on, with 9 occurring as a first
digit less than 5 percent of the time. (We do not admit 0 as a possible first digit.)

This particular logarithmic distribution of first digits, while not universal, is so common and yet so
surprising at first glance that it has given rise to a varied literature, among the authors of which are
mathematicians, statisticians, economists, engineers, physicists and amateurs. The present memoir
includes a bibliography as nearly complete as I could collect, deliberately omitting only those
references to the problem which make no attempt to add to its understanding. My purpose is to review
all the proposed explanations in some rational (but not chronological) order, making plain the
hypotheses and results in each case but often suppressing details of proof.

The main bibliography is arranged and numbered chronologically; every simply numbered item is
directly and avowedly concerned with the first digit phenomenon. The supplementary bibliography,
numbered 1B, 2B, etc., does not réfer explicitly to the problem.

A few notations will persist throughout: R stands for the real number system, R* is the
non-negative part of R, N stands for the set of positive integers. Intervals in R are given as usual, e.g.
[a,b)={x ER: a=x<b}. D, denotes the set of all members of R* whose standard decimal
expansion begins with an integer =p (p =1,2,...,9). Thus,

D, = O (107, (p + 1)107).

In some places D, will be spoken of as a subset of N; in such cases the context will make clear that
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D, NN is meant. The mapping logi: R*\{0}— R will be denoted log, without subscript. E, will
denote log D,, thus,

E, = Q [n,n+log(p +1)).

In the suggestive language of probability theory, the first digit phenomenon is usually expressed:
prob{x € D,} =log (p + 1). This assertion, whatever it may mean, will be called Benford’s Law
because it has been thought by many writers to have originated with the General Electric Company
physicist Frank Benford [2]. Certainly Benford popularized the problem, and he may well have been
unaware that the polymathic Simon Newcomb, primarily an astronomer but also sometime editor of
The American Journal of Mathematics, had also formulated the same law 57 years earlier [1]. There is
ample precedent for naming laws and theorems for persons other than their discoverers, else half of
analysis would be named after Euler. Besides, even Newcomb implied that the observation giving rise
to the Benford law was an old one in his day. One would hate to change the name of the law now only
to find later that another change was called for.

2. Empirical and other data. Newcomb [1] opened his paper as follows. “That the ten digits do not
occur with equal frequency must be evident to anyone making use of logarithm tables, and noticing
how much faster the first pages wear out than the last ones. The first significant figure is oftener 1 than
any other digit, and the frequency diminishes up to 9.” However, Newcomb gave no actual numerical
data.

Benford [2] gives a great deal; he summarizes the counts for each of twenty different tables with
lengths ranging from 91 entries (atomic weights) to 5000 entries from a mathematical handbook (n™",
n’, etc.). These two tables obeyed Benford’s law rather badly, in fact, while others of his listings, such
as the street addresses of the first 342 persons named in American Men of Science, 1934, did better.
What came closest of all, however, was the union of all his tables.

n= . 1 2 3 4 5 6 7 8 9

Benford’s Law L(n) .301 176 125 .097 .079 .067 .058 .051 .046
Stigler’s Law S(n) 241 .183 .145 117 .095 .076 .060 .047 .034
Benford’s Data B(n) .306 .185 124 .094 .080 064 .051 .049 .047
Powers of Two P(n) .30 17 .13 .10 07 .07 .06 .06 .05
Electricity E(n) .316 167 .116 .087 .085 .064 .057 .050 .057
Vancouver Tel. V(n) .00 27 .04 .08 13 .05 .05 .10 .28
Populations PP(n) .190  .200 .185 .168 .098 .065 .043 .037 .013
TABLE 1

In Table 1 the first line L(n) = log(n + 1)—log n is Benford’s law, and is compared with the data
in the succeeding rows. S$(n) is also not empirical, but is the set of predicted frequencies given by
George Stigler [5], based on hypotheses to be described later. B(n) is the empirical frequency found
by Benford [2] in his ensemble of 20,229 entries. P(n) is the frequency of leading digit n among the
first hundred powers of 2, i.e. 2°,2,2?, .. .,2%; notice that P(n) = L(n) about as nearly as 100 numbers
can manage.

The row E(n) was mailed to me by the head of the Electricity Board of Honiara in the (Br.)
Solomon Islands. Upon reading of Benford’s law in [22], he wrote, he went to the customer records of
his 1243 electricity users, whose consumption in October, 1969, ranged from 1 KWH to over 40,000
KWH, and counted first digits for that month’s consumption.

The row V(n) I took from two columns of the 1974 Vancouver (Canada) telephone book, about
210 telephone numbers in all. A glance through the rest of the book confirms that no Vancouver
telephone numbers begin with the digit 1.

The last row PP(n) is taken from a table in The World Almanac (N. Y. Times, New York, 1971),
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listing the populations of all ‘Populated places with population at least 2500° in the United States,
using census figures from 1960 and 1970. I used all the entries for five States.

Each listing in Table 1 illustrates some feature of the discussion to follow. Other empirical data are
foundin [2; §; 6; 8; 24]. Papers containing numerical data based on mathematical considerations (P(n)
is such a set of data) include [3; 4; 5; 9; 15; 16; 17; 18; 24; 25; 27; 28]. Any reader can collect data of his
own, or invent it, as like or as unlike any row of Table 1 as he wishes. In what sense, then, is L(n) a
‘Law’?

3. A bit of philosophy.- Despite the obvious occurrence of natural tabulations which don’t obey
Benford’s law, many authors (including the present author) have offered explanations of L (n) which
are purely mathematical in nature, as though the number system itself, along with the decimal
numeration system, dictated these proportions.

Goudsmit and Furry [3] write, “It is merely the result of our way of writing numbers,” though the
sequel by Furry and Hurwitz [4] explicitly recognizes otherwise, and Warren Weaver [11] says it “is a
built-in characteristic of our number system.”

This point of view springs from the idea that there is some natural way to calculate a “density” for
the set D, in R* or in N, and that this natural way yields log (p + 1). Now it is true, as will be shown in
Sections 4 and 5, that certain summability methods will indeed assign these ‘correct’ densities, but the
quoted statements are nonetheless dead wrong. Certainly the compilations giving V(n) and PP(n) in
Table 1 are written in “our way” but still violate what Goudsmit and Furry claim is the “mere ...
result” of all this. Geometric sequences such as {2"}, on the other hand, do have the property that
randomly drawn finite samples tend to obey the Benford ratios (P(n) in Fig. 1, for example).

This situation is exactly reversed if instead of looking for a “density” for D, we look for a density
of the even positive integers. Everyone will agree usually that half of N is made up of the evens;
certainly all the most popular summability methods assign 1/2 as their density. But now if we look at
the same numbers in the World Almanac that produced PP(n), or the same columns of the
Vancouver telephone directory that produced V(n), we will find that in fact about half of each of
them are even numbers; while samples drawn from the sequence {2"} most emphatically behave
otherwise.

No purely mathematical argument can be expected, after all, to explain things actually found in the
real world, like B(n), without some correspondence between the hypotheses and structure of the
mathematical argument on the one hand, and some observed facts and reliable laws of nature on the
other. A strict and correct proof that in some precise sense half of N is even, or that the density of D,
is log (p + 1), tells us nothing whatever about nature and B(n) unless that ‘precise sense’ matches
something relevant to the actual origin of B(n).

The density arguments, reviewed in Sections 4 and 5 below, were generally given by their original
authors without the least attempt at such justification, and the scale-invariance arguments of Section 6
are likewise philosophically barren. Not until Section 7, (Pinkham’s second method) does a scientific
theory appear, a formula that invokes observation in addition to calculation. The earlier arguments
produce Benford’s law uncritically and therefore predict its appearance in every possible context,
even for PP(n) and V(n) where it fails. The statistical argument of Pinkham produces an
approximation to Benford’s law, with a criterion relating the closeness of the approximation to some
other observable features of the phenomena.

4. Density and summability arguments, discrete model. A first attempt at density is the usual
number-theoretic (or Cesaro) method. Call @,(n) the characteristic function of D, in N, so that
a,(n)=1if n € D, and is otherwise 0. Then put

1) | ain) = (1/n) 3, &y (k).

If lim, a j(n) existed it would be the number-theoretic density of D,, but the limit does not exist. In
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Figure 1 of Section 5 below appears the graph of a function ¢, defined on R*, which is for all practical
purposes the graph of ai in the sense that for n € N, |¢:(n)— ai(n)| = 1/n. Figure 1 shows the
oscillatory nature of the averaging process for D; and much the same thing happens to a, for the
other values of p. Graphs like Figure 1 and Figure 2 appear in [14] and [22], and for other values of p
in [2] and [11].

When a, is plotted on semilog paper, as in Figure 2 below, one is struck with the near-periodicity
of the result and tempted to take an average height of the nth period and call the limit the density of
D,. This is most conveniently done by an integral approximation, so a discussion of the results will be
deferred to Section 5.

B. J. Flehinger does something different. Since a, doesn’t converge, she reiterates the Cesaro
process, putting

(42) ay(n)=(1/n) X, ai(k)
ast=2,3,....In[14] she proves that the successive functions oscillate ever more narrowly and that
(see [20] for a clearer proof) the process converges to log (p + 1) in the following sense:

lim, liminf, a,(n) = lim, limsup,a,(n) =log(p + 1).

The Flehinger limitation method is a regular method, that is, it yields ordinary limits when applied
to convergent sequences. There is no shortage of regular methods, and an infinitude of them will not
yield log (p + 1) as the generalized limit of a, (n), or even of a,(n) for any given finite t. However, the
Flehinger method has the property of being stronger than all iterations of the Cesaro methods, and it
can be proved [12B; Section 6] that any matrix method having this property must agree with the
Flehinger method whenever the latter applies. (Cf. also [29] and [13B] for relationships between these
and yet other summability methods.)

An example of a method stronger than Flehinger’s is the logarithmic matrix method %, defined by

L,=(jlogn)"'if n<jand L, =0 if n>}j

A sequence {s,} is called £-summable if Z; L,;s; converges in n. In the present case, then, where s, is
a,(n), the characteristic function of D,

n

lim, (log.n)™" 3, a,(j)/j =log (p +1).
This result was obtained directly by R. L. Duncan [23].
R. E. Whitney [26] has shown that the matrix method £ can also be applied to the characteristic
function of D, in the sequence of primes, with the same result. Thus, if u,(n) = 1 when the nth prime
begins with a digit = p, and m,(n)=0 otherwise, then

lim, (log.n)™" Z m(j)/j =log(p +1).

Unlike the case of D, in N, where one might suspect the Benford law by a careful examination of
Figure 1 below, and adjust his choice of summation method accordingly, the same result for D, in the
primes hardly seems intuitive. Of the 1125 primes less than 9999, about 14 percent begin with the
digit 1.

J. Cigler, in a personal communication to me in 1969, called my attention to the relevance, in
connection with such density arguments, of the notion of equidistributed sequences. Let {b.} be a
sequence of real numbers in the interval [0,1); the sequence is called equidistributed if for each
subinterval [a, b) C[0,1) we have

@3) lime i B(n)=b-a,

where B(n)=1 when b, €[a,b) and B(n)=0 if b.Z [a, b).
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Now let {a,} be a sequence in R*\{0}, and let b, = log a, (mod 1). Then a, € D, (i.e., a. has first
digit = p)if and only if 0 = b, <log(p +1). If it turns out that b, is equidistributed on [0, 1), then (4.3)
holds with [a, b) = [0, log (p + 1)), and {a.} may be said to obey Benford’s law in the strictest sense, the
sense of ordinary density of D, in the sequence {a.}. Cigler proposed calling such a sequence a strong
Benford sequence.

The sequence of the positive integers themselves N, is not a strong Benford sequence, but any
geometric sequence {ar"} is, provided r is not a rational power of 10. For, if a, = ar", then
b, =loga + nlogr(mod1), and it is well known (e.g., [4B; p. 390]) that arithmetic sequences with
irrational spacing are equidistributed (mod 1). A heuristic ‘proof’ of this result may be found in [22].

The restriction “r is not a rational power of 10” is not entirely needed for {ar"} to have a good
approximation to the Benford law. If r = 10°/%, then

b, =loga +_qug(mod1)

is periodic, i.e., b,+, = b, for all n. The finite range of {b.} is equally spaced and comes as close to
equidistribution on [0, 1] as the spacing 1/q allows. To be precise, we get instead of (4.3) the formula

(4.4) limk;1 2 B(n)=(b-a)| =1/q,

and since g can seldom be a small integer, the Benford law is well approximated for all but a finite
number of ratios r.

Empirical verification of Benford’s law for geometric sequences can be seen strikingly in the first
hundred powers of 2 (row P(n) in Table 1), and E. Hafner [18] has added some interesting flourishes
to compilations of this kind. Benford himself was well aware of this property of geometric sequences,
so much so that he made it the philosophic rock on which to base his law. While mere Man counts
arithmetically, 1,2,3,4, ..., says Benford, Nature counts e°, e*, e*, e> “and builds and func-
tions accordingly.” Therefore Benford’s argument goes on, naturally derlved data tend to come in
mixtures of geometric sequences, Which obey Benford’s law.- He cites numerous examples from
science and technology to support this view, all of them variants on “Fechner’s Law”, a bit of 19th
century scientism that says (roughly), “Response is proportional to the logarithm of the stimulus.” If
Fechner’s law made sense and were true, it would still not be apparent why tabular data should favor
lists of stimuli over lists of responses. However, for a hilarious demolition of Fechner’s law in a typical
application, see [3B].

The logarithmic symmability method also corresponds to an equndlstnbutlon notion. If, as before,
b, =loga, (mod1), Cigler suggests calling {a.} a weak Benford Sequence if {b.} is (1/n)-
equidistributed, which is to say, if

4.5) lim, (log.n)™* 2 B(n)/in=">b-a,

where B(n), a and b are as in (4.3) above. What Whitney proved, then, is that a, = the nth prime
defines a weak Benford sequence. Duncan’s result in [23] now can be read as an alternate statement of
the earlier known fact that {n} is a weak Benford sequence. In [5B; 6B; 14B] are accounts of
equidistribution (mod1), and proofs that {\/n} and {Q(n)} for any polynomial Q are also weak
Benford sequences.

Benford’s observation that “the greatest variations from the logarithmic relation [i.e., Benford’s
Law] were found in the first digits of mathematical tables from engineering handbooks. .. ", which led
him to the conclusion that “the logarithmic law applies particularly to those outlaw numbers that are
without known relationship. ..” was thus a bit hasty, the result of a preference for Cesaro frequency
counts over a more sophisticated weighting. Even so, geometric sequences, which do obey his law, can
hardly be called ‘outlaw . ..without known relationship’!
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Nor are geometric sequences the only kind of strong Benford sequences. D. Singmaster [30] calls
{a.} asymptotically geometric if there is a geometric sequence {ar"} such that lim, (a./ar")=1. In
this case log a. — n log r converges, so that log a, (mod 1) is just as equidistributed as n log r. In other
words, asymptotically geometric sequences are (unless log r is rational) strong Benford sequences.

Now Singmaster notices that the Fibonacci sequence is asymptotically geometric with the golden
mean (1++/5)/2 as limiting ratio. Furthermore, log[(1 +/5)/2] is irrational, hence the Fibonacci
numbers form a strong Benford sequence.

Singmaster’s observation follows no less than three earlier papers [15; 25; 28] giving empirical data
supporting the same statement. Yet none of these four authors noticed any of the series of four articles
by Brown, Duncan, Kuipers and Shiue [8B; 9B; 10B; 11B] which proved that not only the Fibonacci
numbers but (almost) all sequences {a.}, defined by linear recursion, have the property that log a.
(mod 1) is equidistributed on [0, 1), i.e., {a.} obeys Benford’s law. Benford’s law, however, was not
explicitly mentioned in these papers. The proof given by Brown and Duncan rests precisely on the fact
that the sequences in question are asymptotically geometric.

Singmaster does notice that the interleaving of a finite number of asymptotically geometric
sequences produces a strong Benford sequence, and proposes the converse as a conjecture.

5. Density and summability arguments, continuous model. Instead of looking at sequences, or
subsets of N, one can look at R* and ask “What fraction of R* is occupied by D,?” For convenience
in this section we shall only consider the domain [1, ). If @, is the characteristic function of D, in
[1,), let

5.1) 80 =75 [ ety
Explicit formulas are easily found. For p =1, for example,
¢i(x)=1 on [1,2]
=1(x-1)  on [2,10]
=1-8/(x-1) on [10,20]
=11/(x-1) on [20,100]
=1-88/(x—1) on [100,200]; etc.

The graph of ¢, is given in Figure 1, and in Figure 2 it is given again but with a logarithmically scaled
x-axis to show its ‘periodicity’. The maxima converge to 5/9 and the minima are 1/9. Similar graphs
can be drawn for the other values of p. '

George Stigler [5] obtains an ‘average height’ for ¢, by integrating over the nth cycle; he
computes

1 10n+1
52 T g f ¢, (t) dt

( ) 10 1_ 10 o P( )
and takes the limit as n increases. His results are given in Table 1 as Stigler’s Law S(n).

Benford, using the same graph, gets prob D, = log 2, which is .301 as against Stigler’s .241; how?
He does it by using Figure 2 instead of Figure 1, i.e., by getting the average height of the nth cycle as
actually depicted geometrically in Figure 2 and taking the limit as n increases. Thus Benford takes the
limit of

(53) [ su00as

which is not at all the same thing as Stigler’s integral (5.2) under the relevant change of variable. (Both
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Yy = d4(x)
1=
5/9-
1/9p )
1 1 1 1 X
12345678910 20 30
Fig. 1
Yy = &1(x)
1+~
5/9F
1/91 .
1 11 1 | | 1 | | | | x
1 2 10 20 100 200 10% 10* 10° 108
Fig. 2

Stigler’s average and Benford’s average will assign density 1/2 to the set of even integers, by the way.
For this purpose (5.2) and (5.3) should be interpreted as the obviously related discrete sums rather
than integrals.)

Warren Weaver, in his popularization “Lady Luck” [11], also draws a graph akin to Figure 2, but
for ¢, rather than ¢, to exhibit the probability that a number will begin with 1, 2, 3 or 4. He uses the
logarithmic horizontal scale, calling it inessential to his reasoning, as indeed it is since he uses Stigler’s
method of averaging. But he thinks his result is going to be Benford’s, apart from errors of
approximation, and refers to Benford’s as the correct ‘theoretical’ law.

If Weaver didn’t notice the difference between the two methods, certainly Benford didn’t; he
didn’t even consider the ‘somewhat distorted’ (Weaver’s words) horizontal scale of Figure 2 worth
mentioning. It took Stigler, an economist, to observe that the two summability methods correspond to
two different philosophical hypotheses concerning equiprobability. By implication, Stigler therefore
showed something very many of the writers on the problem either ignored or explicitly denied: that
mathematics alone cannot justify a first digit law.

6. Probability interpretation of summability methods. From the definition (5.1), &,(¢) can be
regarded as a conditional probability, the probability that a random variable x is in D,, given that x is
drawn from the rectangular distribution with support [1, #). Let us denote this condition by the phrase
“max x = t”; also, let us denote the event “x is drawn from a rectangular distribution with support
[1,¢), where ¢ is somewhere in the interval [a, b)” by {max x € [a, b)}. Now Stigler’s integral (5.2) can
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be approximated by the Riemann sum

61 3 4y(0)- (M),

where the points fo, ti, . . ., tw form an equally-spaced partition of [10",10"*"]. In probability terms this
sum can be rewritten

M
6.2) >, prob{x € D, |max x = t,} - prob {max x € [t,_s, £;)},
i=1

provided we assume each of the M disjoint events {max x € [#_,, )} has probability 1/M.
Now for large M, the conditions “max x = " and “max x € [t,_,, ;)" are not very different in the
first factor of each term of (6.2); therefore, by a sort of Duhamel’s Principle, (6.2) may be replaced by

M
6.3) > prob{x € D, |max x € [t_y, )} - prob {max x € [t_y, )}
i=1

as a Riemann approximation to (5.2). By the summation law for conditional probabilities, (6.3)
reduces to

6.4) prob{x € D, |max x € [10",10"*")},

which in turn is nothing but prob{x € D,}, since we are assuming, for the time being, that
max x € [10",10"*") is in fact the case. Stigler’s ratios S(p) of Table 1 come from these probabilities’
limiting values as n— o,

Stigler’s method therefore amounts to imagining that we have a large number of tables of data with
the largest entry # in each table lying somewhere in the interval [10", 10"*") with equal probability,
and that the ith table is a sample from the rectangular distribution supported by [1, #,); also that n is
large, and the same for all tables. (Actually, n need not be very large for practical purposes; for n =2
we are already within 1 percent of the values given as S(p).)

Finally, we may drop the restriction that n is the same for all tables by imagining that the tables
before us are mixtures from the above situation for various values of n. The hypothesis that the largest
entry is equidistributed on [10",10"*") for a mixture of values of n is translated by Stigler into the
phrasing “The largest entry in each table is equally likely to begin with the integer 1, 2, ..., or 9.”
Stigler seems to think that this hypothesis, together with the hypothesis that the conditional
distribution of the random entries in a table with a largest given entry is rectangular, produces his
results, but I don’t see that his phrasing is sufficient.

The corresponding interpretation of Benford’s integral (5.3) proceeds from the approximating
Riemann sum

63 3 6,10 (1/m),

where the ¢ are equally spaced on [n, n+1]. In probability terms, as before, this becomes

M
(6.6) > prob{x € D, |max x = 10%}- prob {max x € [10%-1,10%)},

i=1
analogously with (6.2), though now we must consider the events {max x €{10%-1,10%)} all equal and of
value 1/M. As before, we may replace “max x = 104 by “‘max x € [10%-,10%)” in (6.6) and still have a
Riemann-Duhamel approximation. to (5.3). The summation law then reduces the new version of (6.6)
to prob {x € D, |max x € [10",10"*")}, whose limit as n — « gives us Benford’s law L(p).

In Stigler’s interpretation, then, Benford’s universe of tables of data has each table drawn from a

rectangular distribution on [1, ) where the “largest entry” # now has a skewed distribution on some
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given [107, 10"*"), skewed in the sense that log # is rectangularly distributed on [n, n + 1). (Of course,
the same comments about large n, and mixtures of n, apply as before.)

Stigler takes this ‘inconsistency’ — the combination of a rectangular conditional distribution for
random entry with skewed distribution of highest entry — as a flaw in Benford’s analysis, but in fact
both of these ‘urn models’ are equally artificial, although it is conceivable they — one or the other —
might apply in some particular context like the assignment of street addresses or the populations of
cities.

The discrete summability schemes of Section 4 above can also be tortured into probability
interpretations, though none of the authors mentioned there (except Diaconis) does so. However,
A. Herzel [9] starts with an urn model for the question “What is prob{x € D,}?”” in the domain of
positive integers N, and ends with summability questions related to Flehinger’s and Stigler’s.

Herzel imagines M urns, the nth of which contains n balls numbered 1 to n. The conditional
probability of choosing a ball whose first digit is = p, given that we choose from the nth um, is of
course Flehinger’s first average a y(n) ((4.1) above), which is asymptotically ¢,(n) of Figure 1. The
total probability of choosing a ball in D, then depends on the a priori probabilities assigned for
choosing among the urns. Herzel gives three schemes: equal probability, probability weighted linearly
according to the size of the urn, and probability weighted as the square of the size of the umn.

None of these schemes produces a limit as M — o, but Herzel obtains integral approximations and
numerical results close to Benford’s. Herzel’s first scheme is the same as Flehinger’s second
approximation, and the others have justifications as arbitrary as the first. A vast amount of numerical
data is given.

But the mere interpretation of an averaging device as a probability does nothing to answer the
real-life question of why observed tables tend (or tend not) to obey Benford’s (or Stigler’s) law, unless
we have some scientific information about the tabular entries enabling us to verify one or another of
these ‘urn model’ hypotheses. It appears that in this form the scientific question is very hard to answer.

7. Another probability interpretation: Scale-invariance. Roger S. Pinkham [10], attributing the
basic idea to R. Hamming, put forward an invariance principle attached to another sort of probability
model, sufficient to imply Benford’s law. If (say) a table of physical constants, or of the surface areas of
a set of nations or lakes, is rewritten in another system of units of measurement, ergs for foot-pounds
or acres for hectares, the result will be a rescaled table whose every entry is the same multiple of the
corresponding entry of the original table. If the first digits of all the tables in the universe obey some
fixed distribution law, Stigler’s or Benford’s or some other, that law must surely be independent of the
system of units chosen, since God is not known to favor either the metric system or the English
system. In other words, a universal first digit law, if it exists, must be scale-invariant. The simplest way
to express scale-invariance, for D, in R™ at any rate, is to ask that prob {x € D, } = prob{x € kD, } for
all k >0, whatever meaning we may attach to ‘prob’.

Pinkham postulates, then, an ‘underlying distribution of all physical constants’ with a cumulative
distribution function F, so that F(x)= prob{physical constant is =x}. Then since D, =
Usz__.[10" (p +1)10") and kD, = U3 [k - 10" k(p + 1)10"),

(1.1) prob {x € D,} = 2 [F((p +1)10") - F(10")], and
(12) prob {x € kD, } = im [F(k(p + 1)10")— F(k - 10")].

Under the reasonable assumption that F is continuous, and that (7.1)= (7.2) for all k >0 and all
p=1,2,...,9, Pinkham proves that prob{x € D,}=log(p + 1) for each p.

All depends on whether there is such a distribution function describing the universe of tabular
data. As a scientific hypothesis it gives unease. For example, if h is the real number such that
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F(h)=1/2, then half the numbers in the universe are less than h, which makes & a most remarkable
physical constant. Now what becomes of # when we exercise our freedom to make scale changes?

D. Knuth [20] in fact points out that, science and philosophy aside, mathematics alone can prove
no such F exists. If instead of base 10 we used another base b for our numeration system, the set of all
numbers in R* whose initial digit is = p would be

A= U [b"(p+1)b"), and

o

prob {x€4,}= 3 [F((p +1)p")~ F(b")],

=—o0

and the same argument used by Pinkham to prove prob{x € D,} = log (p + 1) will also produce the
result prob{x € A,}=log,(p + 1). Therefore

i [F(rb")~ F(b")] = logsr

for all integers r and b with 1<r<b. It is not hard to prove no such F can exist.

All this is not to say, however, that the formula prob{x € A,} = log,(p + 1) is wrong. It is in fact
the correct generalization of Benford’s law to tables written in the base b notation, and it can be
derived from any of the summability arguments used above for base 10. As will be seen below, it is as
valid as Benford’s law, mutatis mutandis, wherever Benford’s law has validity. In the present context it
is used only to show that the Pinkham-Hamming distribution function F cannot exist, and not that
deductions from the existence of such an F are necessarily false.

In [19] the present author proposed another sort of probability model with scale-invariance.
Instead of using some F as above to give a countably-additive probability measure on R*, a
finitely-additive set function u is used. Such functions, called Banach measures, exist with the
properties: u(R*)=1; u(A)=0 for all ACR™; u(AUB)=pu(A)+u(B) when A and B are
disjoint; and u(kA)= u(A) for all k >0 and A CR™. The last property is the scale-invariance. All
such measures (they exist in profusion) agree on the sets D,, giving them measure log (p + 1). One can
even demand the additional property w{([0,#])=0 for all h € R*, avoiding the philosophically
awkward ‘midpoint’ of all physical constants since the resulting measure is concentrated in the
neighborhood of infinity.

There are other ways to improve the same model. We can add the requirement u(A + k)= u(A)
for all k =0 and A CR™. This means that an affine change of scale, as from Fahrenheit to Celsius
temperatures, will preserve the Benford law. Again, if instead of R* for the underlying measure space
we wish to use the space of positive rational numbers, or even the set of all rationals with terminating
decimal expansions, Banach measures with the corresponding requisite properties can be shown to
exist and give the Benford law. Terminating decimals seem particularly appropriate as the model for
tabular data, but they cannot of course be used to underlie a countably additive non-atomic
probability theory.

Bumby and Ellentuck [21] describe a third sort of model involving a form of scale-invariance,
which has its points of mathematical interest but adds little to an understanding of the first-digit
problem, except in that it reinforces the notion that every ‘reasonable’ notion of density should assign
value log(p +1) to D, (this time as a subset of N).

Yet none of these arguments can finally be convincing, given the knowledge that any child can
construct a list of numbers violating Benford’s law. It would be perfectly consistent with every known
theorem of mathematics to live in a universe whose World Almanac failed to contain a single entry
beginning with an odd digit.

Besides, what can scale-invariance possibly have to do with the street addresses of the 342
American men of science canvassed by Benford?
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8. Statistical explanation: Pinkham’s second method. What is to my mind the true explanation is
the statistical one given in the second part of Pinkham’s paper [9]. It is a descriptive argument at
bottom; anyone who thinks Isaac Newton didn’t really explain the planetary motions, since he merely
reduced them to an alternative formulation invoking an unexplained force of gravity, will also
complain of what follows on the same philosophical grounds.

Suppose we are looking at a table of data drawn from some distribution F: R*— [0, 1], so that
prob {x = a} = F(a). We shall suppose F not only continuous but thrice differentiable if need be, for
convenience, just as R* is for convenience our underlying universe. F is an approximation which can
always be built to suit the finite situation at hand. By no means is F to be construed as descrjbing the
whole numerical universe, or even the whole book of data before us; it is only to be consistent with
our sample.

Then, as in Pinkham’s scale-invariance argument but with a different philosophical interpretation,

@8.1) Prob{x € D,}= > [F((p +1)10%)— F(10")].
k=—c0

Let

8.2) G(x)= F(10%);

then

(8.3) Prob{x € D,}= Y, [G(k +log(p +1))- G(k)).

k=—o0
If we define
(8.4) H(x)= > [G(k+x)-G(k)] for all x €[0,1],
k=—c0

then (8.3) may be rewritten ‘

8.5) Prob{x € D,} = H(log(p +1)) (»p=1,2,3,...,9).

The statement of Benford’s law is now simply

(8.6) H(x)=x for x =log2,log3,...,log9;

and the scientific question becomes: how shall we recognize distributions F whose corresponding H
have property (8.6)? And secondly, what reasons do we have to believe that our table of data does or
does not derive from a distribution of this sort?

A sufficient condition for the exactness of Benford’s law is obviously

8.7 H(x)=x for all x €]0,1),

and most of the analysis to be cited centers around (8.7) rather than (8.6). Let us denote the derivative
F' by f and G' by g (these are the densities of their respective distribution functions); also H' by h.
Then from (8.4) we have, for all x €[0,1),

8.39) hx)= 3 g+ k)

and the sufficient condition (8.7) becomes
8.9) h(x)=1 for all x €[0,1).

In terms of random variables, if F is the cumulative distribution function for the random variable
x, then G is the cumulative for the variable log x and H for the variable log x (mod 1). We are looking
for conditions on a variable x which assure that logx (mod1) is uniformly (i.e., rectangularly)
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distributed on [0,1]. We can, by the way, include distributions whose densities fail to exist here and
there, as the next example will show, and only demand that (8.9) be true at all but a finite number of
points.

One sort of distribution satisfying (8.9) precisely comes easily to mind: Suppose F is such that for
some fixed @ =0, G turns out to be piecewise linear with slope K,, on each interval (a + n, @ + n + 1),
and such that 2K, =1. Then G'=g is a step-function such that (8.8) implies (8.9). Benford
presciently exhibits this very phenomenon with & = log 2 (Fig. 3, taken from [2; p. 561]). G is after all
only F plotted on semilog paper, so that Figure 3, though labelled as if it were F for the street
addresses of the scientists, is geometrically a graph for G, and would actually be G if the abscissae
were labelled with the logarithms of the numbers displayed.
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Had Benford been looking to verify (8.9) he would have been tempted to move the ‘corner’ P, of
Figure 3 to a point above 2000, since the other corners are above 2, 20, 200 and 20,000, more or less
(and slope zero after 20,000). This would have been not much of a distortion, and more convincing,
than the use to which he did put Figure 3, which was to ‘show’ that the street addresses fell into a finite
number of geometric séquences.

But a miracle like Figure 3 is too much to expect in general. The truly salient feature of Figure 3,
and of any other distribution that obeys Benford’s law more or less, inheres in its general shape, and
not in any piecewise linearity.

Goudsmit and Furry [3] and especially Furry and Hurwitz [4] actually obtained formulas
equivalent to (8.9) and understood perfectly well (though their language is by today’s standards
obscure) that for any given distribution some test of departure from (8.9) was needed. They actually
calculated sup{|h(x)—1|: x € [0,1)} for a number of popular distributions, including the Cauchy law
which is given below as an example, but they gave no general criteria.

Pinkham’s real contribution was to apply some Fourier transform theory to the matter and arrive
at the following explicit formulas:

(8.10) H(x)-x= ; R(k)[1- exp(- i2mkx)], where
0

k=—o

@8.11) R(k)= (@4n%k?)" f: exp (i27kt) dg (£).
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Sufficient conditions for the validity of these formulas are that g be of bounded variation and that
lim g(t) = 0 as |¢|— . For many popular distributions, including the Cauchy, these conditions are
satisfied. .

Since |exp (i2wkt)| =1, | R(k)| = (47*k?) ' var[g], and since

[1-exp(—i2mkx)| =2, |H(x)-x|=2, 2var[g](4m?k?)";
k=0

summing the series in (8.10) gives
(8.12) |H(x)— x| =(1/6)var[g], for all x €[0,1).

Pinkham stops with (8.12), but gives no examples to show his bound is practical. Feller [13] gets the
rougher bound | H(x) - x | < (x/2)var[g] using the hypothesis that g is unimodal and monotone on
each side of its maximum (which is therefore (1/2) var[g]). It is almost intuitively evident that when g
is ‘wrapped up’ mod 1 to give h (by (8.8) above), then (8.9) fails by at most (1/2)var[g].

But these bounds are not in fact very good. For an example, the Cauchy distribution has density
function f(x)=2a/w(x*+ a®) satisfying all the relevant hypotheses. A calculation shows that
var[g] = 1.46 approximately, so that for this case Pinkham’s formula | H(x) — x | < .25 assures us only
a miserable approximation to Benford’s law. In fact, however, Furry and Hurwitz [4] have calculated
|H(x)— x| <.056x for the Cauchy distribution. In other words, a large sample from the Cauchy
distribution will show .284 <Frequency of x € D, <.318, rather close to Benford’s .301, while
Pinkham’s bound only gives .05 < Frequency of x € D, <.55.

At the suggestion of J. H. B. Kemperman I carried Pinkham’s analysis one step further. Assuming
F (and therefore g) has enough derivatives, one can integrate by parts in (8.11), obtaining

o

8.13) R(k)= @k f e 2™ dg (1)
(provided limy,.. g'() = 0, a reasonable assumption). Hence |R(k)| = (8°k®)™ var[g'], and com-
bining this with (8.10) yields the estimate *

(8.14) |H(x)- x| =(@4n>)™" Y, 1/k>var[g], or
k#0
(8.15) |H(x)— x| =.0194var[g'] approximately.

In the case of the Cauchy distribution, to continue the example, it turns out that var[g'] = 2.53, so
that (8.14) gives | H(x) — x | =.0491, about one-fifth the discrepancy allowed by Pinkham’s formula.

Recently J. H. B. Kemperman, using a method quite different from that of Pinkham, has obtained
the slightly better formulas (announced in [31]):

(8.16) |H(x)— x| =1/8var[g], and

(8.17) |H(x)- x| =1/64var[g]],

with the additional information that 1/8 and 1/16 are the best possible coefficients. Indeed, he is able
to describe the distributions which give rise to the worst possible cases. (They are quite jumpy.)

But in general even Kemperman’s ‘best possible’ estimates in (8.16) and (8.17) are not very close to
the true value of | H(x) — x |. The whole truth is contained in (8.10), and the shape of F (and therefore
of g and g') affects the coefficients R (k) as given in (8.11) or (8.13). The integrals here are in general
badly majorized by var[g] or var[g’] for all k, because the integrands are periodic with period 1/k
with values on the unit circle. For most g the integrals should balance out to 0 or nearly so, rather than
anything like var[g] or var[g']. The literature still lacks a characterization in convenient terms
predicting which distributions produce small discrepancies | H(x)— x .
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A direct study of (8.10) can throw light on an empirical observation. In Table 1, PP(n) gave the
first digit frequencies for populated places with populations = 2500. F has a very steep slope at 2500
so that #f(¢) has a peak there. Since (from (8.2)) g(¢) = F(10*) - 10 log. 10, we see that dg and dg’ give
a heavy contribution in the neighborhood of the single point log 2500. The integrands in (8.11) and
(8.13) therefore have no reason to be small. The Vancouver telephone numbers, deliberately assigned
so as to omit the first digit 1, plainly are drawn from an even more artificial distribution, also
producing peaks in g and g'.

9. Mixtures of distributions; invariance properties again. Some writers have pointed out that tables
which occur naturally often represent distributions which are mixtures or composites of other
distributions, and that the mixing process itself improves the approximation to Benford’s law.

Furry and Hurwitz [4] prove the following: If f is a probability density on R*, and if we define
F¥f(x) = 2= (1/t)f(x/t)f (t)dt, then f*f is also a density. In fact, f*f corresponds to the procedure of
mixing all the rescaled distributions F(x/t) in fractions proportional to f(t), as ¢ runs through R*.
Reiterations of this procedure yield densities f*"; and Furry and Hurwitz show that if h, is the
function h corresponding to f**, then lim, | h,(x)— 1| = 0 uniformly in x. Thus any table in nature that
can be construed as coming from high order mixtures of this sort carr be expected te obey Benford’s
law (in the form (8.9)).

The Furry-Hurwitz convolution can also be interpreted as follows: If X; are identically distributed
independent random variables each with probability density function f, then f*" is the probability
density for the random variable Y, =TII;_, X.. Since log Y, = £7_,log X, the central limit theorem,
which applies to sums of this sort under rather non-restrictive conditions, shows that the random
variable log Y, (mod 1) approaches uniform distribution as n increases. This is an alternate statement
of the Furry-Hurwitz result.

Adhikari and Sarkar [16; 17] take X; as independent random variables uniformly distributed on
[0,1] and prove directly, without reference to the above remarks, that the distribution of II}_, X; tends
to obey Benford’s law as n increases. They do the same for powers in place of products and for certain
other multiplicative combinations of the X;. They also present data from computer simulations to
exhibit these phenomena and their rates of convergence. For example, in [16] they take 60,000
five-digit random numbers, 6700 + 100 of which begin with each of the nine possible digits. Machine
calculation showed that the 60,000 eighth powers of these numbers obey Benford’s law to, within 10
percent.

Actually one doesn’t have to go this far. The reader can look for himself at the 81 products in the
schoolboy notebook multiplication table and see that they are already noticeably closer to Benford’s
distribution than the rectangularly distributed margins.

Adhikari and Sarkar [16; Th. 3] also give a partial converse to the theorems on scale invariance: If
X is a random variable such that H, which is the distribution function of log X (mod 1), obeys (8.7)
above, then the random variables 1/X and cX for any ¢ € R*\{0} have the same property. For, if X
has the cumulative distribution function F as above, and log X the distribution G, an easy calculation
shows that log X has the distribution Gi(x)= G(x —logc) and log1/X has the distribution
G,(x)=1- G(- x). Thus G, and G have exactly the same dispersion properties as G. In particular,
if (8.7) holds for X, it holds for cX and 1/X.

Among other things, this observation contradicts the many writers who have said vaguely that
Benford’s law holds better when the distribution F (or its density f) is ‘widespread’ or ‘covers several
orders of magnitude’. In fact, a change of scale makes no difference whatever; not only will a table
obeying Benford’s law continue to do so after a change of scale, but a table that fails to do so will
neither improve nor grow worse by rescaling (or taking reciprocals).

One must be careful to interpret the Benford law for this purpose in the sense of (8.7), which is
stronger than (8.6). Hilda Geiringer [7] was even led to doubt the validity of Benford’s law because of
this confusion. She observed (as Hamming and Pinkham did some years later) that if Benford’s law
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were true it should be scale-invariant, for the same reasons given by Pinkham. But she then imagined
a table of 100 entries, 30 of which were the integer “1”, 18 were “2”, and so on in the proportions
L(n). Doubling every entry, however, would yield a table having very far from these first digit
proportions.

The reason for this paradox is that Geiringer’s table is a poor sample from any distribution which
satisfies (8.7) although it may be a good sample from some crazy distribution satisfying only (8.6). A
reasonable betting man confronted with a longish table he knows obeys Benford’s law may be
confident of its scale and inverse invariance.

This confidence was illustrated in [22; p. 118] when in preparing the article, I selected out of thin
air a table of only 18 entries obeying Benford’s law as well as so short a list can, and found the law so
well preserved under the first four scale changes I chose (¢ = 3, 6, 9 and 12) that I published my first
effort without the least change.

Finally, R. W. Hamming [24] adopts the finite point of view of a computing machine which for
multiplicative purposes is indifferent to the position of the decimal point and considers the distribution
whose density is given by

r(x)=(loge)/x if 1/10=x=1
©1) =0 otherwise.
This “reciprocal distribution” satisfies Benford’s law, and is in fact the only distribution supported on
[1/10, 1] which will satisfy (8.9) precisely.
In floating point arithmetic the product or quotient of two numbers in [1/10,1] is again placed in
[1/10, 1] by a shift of decimal point if necessary. With this definition, and defining the distance of an
arbitrary probability distribution density f (carried on [1/10,1]) from r as

D(f) =sup {Lﬂ%ﬂl X e\[1/10, 1]},

Hamming proves the following two theorems:

(a) If a random variable X has probability density r and if Y is any other random variable with
density supported on [1/10,1], then XY, X|Y and Y/X all have the reciprocal distribution;

(b) If X and Y are any two random variables with densities supported on [1/10,1], and if X has the
probability density f and XY has density g, then D(g) = D(f).

Equality in (b) is quite rare, and Hamming gives some further information on rates of convergence
to r. He also has some theorems on sums, but they have rather artificial hypotheses and do not tend to
explain the occurrence of Benford’s law as (a) and (b) do for compilations which result from repeated
multiplications.

10. Final comments on the literature. Certain items in the Bibliography have not yet been given
sufficient attention. The book by Furlan [6] I have not myself seen, but Hilda Geiringer’s review [7]
makes it plain that the work is more mystical than mathematical, and offers insight to neither scientist
nor mathematician. Apparently Furlan argues, with a superabundance of detail, that Benford’s law
reflects a profound ‘harmonic’ truth of nature, related to Benford’s notion that nature counts in
geometric sequences.

C. Gini [8] refers to Furlan’s book in a footnote, rather guardedly (““... un grosso volume, di vari
punti di vista molto interessante.””), but makes no use of it whatever. Gini’s paper mainly gives
empirical data, census figures supporting Benford’s law and so on, but insists that the law cannot be a
universal truth or a mere property of the number system; for comparison’s sake he tries to fit another
law to some of his data.

A. Herzel [9], writing at the same time as Gini, also does homage to Furlan — three pages’ worth



536 R. A. RAIMI [Aug.-Sept.

— but ends up doubting that a universal exponential law of economics or sociology exists. Herzel’s
paper is mainly devoted to the urn models which in effect try to make N into a probability measure
space in which the sets D, have the right measure. Diaconis [29] does much more along these lines.

Varian’s note [27] is a suggestion that Benford’s law be used as a partial test of the honesty or
validity of purportedly random scientific data. The suggestion is attractive. In fact, in Table 1 above,
one can observe that PP(9) is about 1/3 the size of PP(8), which is very far from the ratio predicted by
Benford’s law. It is true that the PP table doesn’t satisfy the law overall, because of the 2500
threshold, but that really shouldn’t affect PP(9)/PP(8). One might therefore be led to suspect that
census-takers have a tendency, when faced with a figure just a little below a power of 10, to round it up
a little, putting it into the next order of magnitude. This may be wrong in the present case, but social
scientists need all the tools of suspicion they can find.

The paper of J. Franel [2B] is a belated sequel to a famous argument of H. Poincaré [1B] in which
the master attempted to show that the third digit.of a table of logarithms should be as often odd as
even. Franel shows this is not quite so, but that the probability of an odd nth digit converges to 1/2 as
n increases.

A good number of the writers cited above have also discovered, quoted or proved (in some sense),
as Franel almost did, a second digit law related to Benford’s. If S, is the set of all real numbers in R*
whose second digitis =p (p=0,1,2,...,9), the law is

(10.1) Prob{x € §,} = zl [log (k + (p + 1)/10) - log k],

and it follows immediately from any argument that assures (8.7). There are corresponding formulas
for third and higher digits, all of which may be summarized in one diagram: The C scale of a slide rule.
The probabilities are just those fractions of the C scale occupied by the sets in question.

Another popular generalization repeated very often is the substitution of some base b other than
10 for this entire discussion. When b = 2 the first digit problem is of course trivial but otherwise there
is nothing new in the generalization; every argument that applies to 10 applies to b mutatis mutandis.

Finally, it seems obligatory to describe Simon Newcomb’s paper [1], in which, by the way, the
second digit law is already given and the inessential character of the base 10 already noted. Newcomb
notes that any positive number can be written 10° for some real number s, and that since reducing s
modulo 1 does not affect the first digit behavior of 10°, we may as well assume 0 = s < 1. All that is
needed now is some reasoning sufficient to give Newcomb’s conclusion that “The law of probability of
the occurrence of numbers is such that all mantissae of their logarithms are equally probable,” i.e.,
that s is uniformly distributed on [0, 1).

Alas, the argument Newcomb does give begs the question, though it has at least the virtue of
brevity. At the crucial point he says ...it is evident...”. One is forced to conclude that the uniform
distribution of s (mod 1) was an inspired guess, akin to Buffon’s guess that the angle of his needle, not
its cosine or log sin, is what obeys a uniform distribution law (mod 7).

One can easily invent a (‘biassed’?) needle-tossing machine which violates Buffon’s hypothesis,
just as any phone company can print a directory violating Benford’s law. What remains tantalizing is
the notion that there is still some unexplained measure in the universe which says that the probability
of such violations is small.

Note: References 32 through 37, and 15B, were added in proof. Of all these additions, only [33] invokes a
method or point of view disjoint from those reviewed in this article. I am also in possession of recent preprints or
otherwise unpublished memoirs on the first digit problem written by the following authors: Persi Diaconis
(Stanford University, Stanford, Calif.), Robert J. Epp (University of California at Los Angeles, Calif.), and Dennis
P. Allen, Jr. (Bell Telephone Laboratories, Holmdell, New Jersey 07733).
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SOME INTERESTING PROPERTIES OF
THE VARIATION FUNCTION

FRANK N. HUGGINS

For a function f which is of bounded variation on [a, b], V; denotes the function defined, for each
x in [a, b], by V;(x)= Vi(f), where V(f) denotes the total variation of f on [a, x]. V}, called the
variation function of f on [a, b], possesses some rather interesting properties, particularly the property
of inheriting certain properties from its parent function f. While some of the properties of V; are well
known, others are not so well known, and it is the purpose of this paper to present a unified exposition
of the properties of the variation function. In order to make this material more readily accessible to
the advanced undergraduate or graduate student in mathematics, the author has given detailed proofs
of all theorems in this paper. Although expository in nature, this paper contains some new results,
namely Theorem 5, and Theorem 6 which is a generalization of a known result.

DeriniTioN 1. The statement that the function f is of bounded variation on [a, b] means that f is a
function whose domain includes [a, b] and there exists a nonnegative number B such that if {x;}{o is
any subdivision of [a, b], then

) 3 1fx) = fx) | < B.

The least such number B is called the (total) variation of f on [a, b] and is denoted by V2 (f). (Note:
Vi(f)=0)



