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THE COMPLEX ZEROS OF RANDOM POLYNOMIALS 

LARRY A. SHEPP AND ROBERT J. VANDERBEI 

ABSTRACT. Mark Kac gave an explicit formula for the expectation of the num- 
ber, vn (a), of zeros of a random polynomial, 

n-I 

Pn(z) = E ?tj, 

j=O 

in any measurablc subset Q of the reals. Here, ... ?In-I are independent 
standard normal random variables. In fact, for each n > 1, he obtained an 
explicit intensity function gn for which 

E vn(L) = Jgn(x) dx. 

Here, we extend this formula to obtain an explicit formula for the expected 
number of zeros in any measurable subset Q of the complex plane C. Namely, 
we show that 

E vn (Ki) = J hn(x, y) dxdy + J gn(x) dx, 

where hn is an explicit intensity function. We also study the asymptotics of 
hn showing that for large n its mass lies close to, and is uniformly distributed 
around, the unit circle. 

1. INTRODUCTION 

More than fifty years ago, Mark Kac [7] gave an explicit formula for the 
expectation of the number, vn((2), of zeros of a random polynomial, 

n-I 

(1.1) Pn(Z)= E jZj, z E C, 
j=O 

in any measurable subset Q2 of the reals. Here, ?o, . n. ., l-I are independent 
standard normal random variables (which Kac argues is the most natural choice 
for a "typical" polynomial since this distribution is invariant under orthogonal 
transformations-but of course other choices for the measure are also interest- 
ing). In fact, for each n > 1, he obtained an explicit intensity function gn for 
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which 
E vn(2) = jgn(x)dx. 

Here, we extend this result by deriving an explicit formula for the expected 
number of zeros in any measurable subset Q2 of the complex plane C. Namely, 
we show that 

E vn(Q (2) hn(x,y)dxdy+J gn(x)dx, 

where hn is an explicit intensity function. (Note that we make the usual iden- 
tification between a point z of the complex plane and its real and imaginary 
parts, x and y.) 

The intensity function hn is conveniently expressed in terms of the following 
three real-valued functions defined on C 

n-i 

Bk (z) E jkIz2j, z E C, k = O, 1, 2, 
j=O 

and the following two complex-valued functions 
n-i 

Ak(Z) = EjkZ2j, ZEC, k=O,1. 
j=O 

Finally, let 

(1.2) Do(z) - B2(Z)-IAo12(z). 

Our main result is 

Theorem 1.1. For each region Q2 E C, 

(1.3) Evn(Q2) = jhn(X, y)dxdy + j gn(x)dx, 
Q Q~~~nR 

where 
= B2D9 - Bo(B 2 + A12) + (AoA, + AoA1) 

7rI Z12 3 

and 
(BoB2-B 2)-/2 

gn- IzzB 7rlXzlBo 
As already mentioned, Kac [7] was the first to study the real zeros for random 

polynomials of this type and he obtained the intensity function gn . Somewhat 
earlier (but delayed in publication by the war), Rice [12] obtained a similar 
formula for the expected number of zeros of a general stochastic process X(t) 
again depending on a real parameter t but did not consider the special case 
when X is a polynomial in t. Here, we obtain Kac's gn as a consequence of 
our analysis of the zeros in the complex plane. 

While the definition of hn in Theorem 1.1 looks rather complicated, it is 
nevertheless amenable both to computation (see Figures 1 to 6 in Section 5) 
and to asymptotic analysis. Indeed, the computed plots appearing on the left- 
hand side in Figures 1 to 6 clearly show that as n gets large the zeros tend 
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to lie very close to the unit circle and, ignoring the real roots, appear to be 
approximately uniformly distributed around the circle. Regarding analysis, the 
next theorem shows that the intensities hn and gn have well-defined limits as 
n tends to infinity. These limits are best expressed in terms of the following 
functions: 

(1.4) B(z) = 1 1zI 

(1.5) A(z)= 11 z2 

and 

(1.6) D(z)= B2(Z)-IA12 (Z). 

Theorem 1.2. We have the following limits: 

h = limh = IBID 
n n 

7 

and 

g = limgn =-IBI. 
n 7 

The limit functions, h and g, can be viewed as intensity functions for the 
zeros of the random power series 

00 

P(Z) =ZE jz 
j=O 

(at least within its radius of convergence, lzl < 1). 
Following the initial works of Kac and Rice, a large body of research on zeros 

of random polynomials has appeared-see [2] for a fairly complete account 
including an extensive list of references. Most of this work has focused on 
the real zeros, although [4], [5] and [14] are a few notable exceptions. Also, 
the recent paper of Edelman and Kostlan [3] gives a very elegent geometric 
treatment of the problem. 

In the following section, we derive explicit formulas for the intensity func- 
tions hn and gn. Then in Section 3, we study the limiting form of these 
functions as n tends to infinity. Section 4 presents more delicate asymptotic 
analysis that shows how hn and gn behave when n is large but finite. Next, 
in Section 5 we discuss computational issues, and' finally, in Section 6 we offer 
some speculation and suggest future research directions. 

We end this section by remarking that even though we usually consider the 
entire complex plane, it suffices in general to study simply the unit disk cen- 
tered at the origin since, given a random polynomial Pn(z) , the transformation 
to znpn(llz) produces a new random polynomial whose zeros are exactly the 
reciprocals of the zeros of Pn (z) . Hence, for any set A, we have that 
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where A1 = {z z1 E A}. From this it follows easily that any intensity 
function, say h, must satisfy 

(1.8) h(z) = h(1lz) 12 

2. THE INTENSITY FUNCTIONS hn AND gn 

This section is devoted to the proof of Theorem 1.1. We begin with 

Proposition 2.1. For each region Q2 E C whose boundary intersects the real axis 
at most only finitely many times, 

(2.1) Evn(Q2) = i j !F(z)dz, 

where 

(2.2) F = BIDO + BoB AoAI 

Proof. The argument principle (see, e.g., [1], p. 151) gives an explicit formula 
for the random variable vn (K2), namely 

(2.3) Vn(Q) = I Pn'(Z) ddz. 27i Pn(z) 
Taking expectations in (2.3) and then interchanging expectation and contour 

integration (the justification of which is tedious but doable), we get 

(2.4) Evn( 2) I LEa Pn'f(z)dz. 

To facilitate computations, it is advantagous to multiply and divide by z (mul- 
tiplying inside the expectation and dividing outside). The following lemma 
shows that away from the real axis the function 

(2.5) F(z) =E zPn(Z) 
FPz=E(z) 

simplifies to the expression given in (2.2), and since we have assumed that aO2 
intersects the real axis at only finitely many points, this finishes the proof. [ 

Lemma 2.2. Let F denote the function defined by (2.5). Off the real axis, 

F- B1D O+BOB, -AoAI 
BODO + B 2- AOAO 

On the real axis, F has a jump discontinuity. Indeed, for each x E R, 

lim F - B1 - i(BoB2 - B2)l/2 
z-*x: Im(z)>O Bo 

and 

lim F _ B1 + i(BoB2 -B 2)1/2 
z-*x: Im(z)<O Bo 
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Proof. First we consider the case where z does not lie on the real axis. Note that 
Pn(z) and zPn(z) are complex Gaussian random variables. It is convenient to 
work with their real and imaginary parts, 

(2.6) Pn (z) = 41 + iX2, 

(2.7) ZPn(z) = 6 + i44, 

which are just linear combinations of the original standard normal random 
variables: 

1= , ajj 2 = Ej ,b 12 

6 = Ej=_0 c11, 44 = Zj7 Jd1q1. 
The coefficients in these linear combinations are given by 

aj = Re(zJ) = .2 .2 

(2.8) bj = Im(zi) = 2i 

Cj = jaj, 
dj = jbj. 

Put [ = Ri 42 44]1T. The covariance among these four Gaussian random 
variables is easy to compute: 

[aTa aTb aTc aTd 

(2.9) CovQg) = E44T = b Ta bTb Tc bTd d 

LdTa dTb dTc dTdj 

We now represent these four correlated Gaussian random variables in terms 
of four standard normals. To this end, we seek a lower triangular matrix 
L = [lij] such that the vector 4 is equal in distribution to L4C, where 4 = 
[Ri C2 C3 W41T is a vector of four independent standard normal random 
variables. The following simple calculation shows that L is the Cholesky fac- 
tor for the covariance matrix: 

(2.10) CovQ4) = E'T = ELC4TLT = LLT. 

DD Now, since C=L, and L is lower triangular (the symbol D denotes equality 
in distribution), we get that 

zPn(z) _ 43 + iU4 D (131 + il4i)Cl + (132 + il42)C2 + (133 + il43)C3 + il444 

Pn(z) '1 + i2 (111 + il20)CI + Il22C2 

Hence, exploiting the independence of the Ci's, we see that 

(2.11) F(z) = E ZPf(z) = E acl + fiC2 

where 
a = 131 +i141, fi = 132+ U42 
y = 11 +il2i a = il22. 
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Splitting up the numerator in (2.11) and exploiting the exchangeability of Ci 
and C2, we can rewrite the expectation as 

F(z) = af(y/3) + f f(61Y) 

where f is a complex-valued function defined on C \ R by 

f (w) = E C 
: 

The expectation that appears in the definition of f can be explicitly computed. 
Indeed, 

f(w) = . e/ Pcos6 e-P2/2 pdpdO 
21r i wpcos6 + psinO 
1 27r dO 

2X w + tan 0 

and the substitution u = tan 0 can then be used to rewrite this integral as 

01 I~ 

f(w) (w=)(lu2)du, 
S( ) i|00 (W + u)(l + U2)d 

which is easily solved using the calculus of residues. The final result is that 

| w + g Im(w)>O, 
f(w) ={ 

Im(w) < 0. 

Recalling the definition of a and y, we see that 

Y 121 .111 

1 '22 '122 

In general, 11 and 122 are just nonnegative. However, it is not hard to show 
that they are both strictly positive whenever z has a nonzero imaginary part. 
Hence, y/1 lies in the lower half-plane, 5/y lies in the upper half-plane, and 

F(z)= .+-y 
(2.12) I+1 

ia +f 132-141 +i(131 +142) 

iy + a -121 + i (/ I + 122) 
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At this point, we need explicit formulas for the elements of the Cholesky factor 
L. From (2.9) and (2.10), we see that 

a Ta = 12 

bTa = 121111, bTb = 122 + 1222, 

cTa = 131111 , cTb = 131121 + 132122, 

d Ta = 14111 , d Tb = 141121 + 142122. 

Solving these equations in succession, we get 

aTa 

121 bTa 122 (aTa)(bTb) - (bTa)2 

cTa (aTa) (CTb) - (cTa) (bTa) 
'31= /, 32= a R 

dTa (aTa)(dTb) - (dTa)(b Ta) 

141 142= = 

where 

R = (aTa)(bTb)-(bTa)2. 

Substituting these expressions into (2.12) and simplifying, we see that 

(2.13) 
-dTa + iCTa - i (aTa(-dTb + iCTb) -(-dTa + icTa)b Ta) /R 

F() 7 _-bTa + iaTa + iR 

Recalling the definitions of aj, bj, cj, and dj given in (2.8), it is easy to check 
that the following identities hold: 

aTa = + 1 (Ao + 2Bo + Ao), 
bTa = -(Ao - Ao), bTb = - 1 (Ao - 2Bo + Ao), 
cTa = +(A1 +2B1 +A1), cTb = -I(A1 - A1), 
dTa = -(Al - A), dTb = -I(A1-2B1+A1). 

Plugging these expressions into (2.13) and simplifying, we get that 

(2.14) F(z) - Al + B1 + (AOBI + B0B - AIB0 -AAI)/D 
AO + Bo + Do 

where D0 is given in (1.2). It turns out that a further simplification occurs if we 
make the denominator real by the usual technique of multiplying and dividing 
by its complex conjugate. We omit the algebraic details except to mention that 
a factor of Ao + 2Bo + Ao cancels out from the numerator and denominator, 
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leaving us with 

(2.15) F(z) = B1Do + BOB, - AOAI 
Do(Bo + Do) 

or, expanding out D , 

BODO + B0B2- A0A1 (2.16) F(z)= RoDo +BJ2-AoA0 

The expression in (2.15) is as simple as possible, whereas (2.16) illustrates a 
certain parallelism between the numerator and denominator. 

Now consider a point x on the real axis. On the reals, Ak = Bk, k = 0, 1, 
and so Do = 0. Hence, the right-hand side in (2.15) is an indeterminate form. 
To analyze the limiting behavior of F near the real axis, we first divide the 
numerator and denominator by Do: 

B1 + BOB, -AoA1 
(2.17) F Do 

Now, only the ratio in the numerator is indeterminate. To study it, we write 
z = rei0 and investigate the numerator and denominator of this ratio when 0 
is small. From the definitions, we see that 

(2.18) BOB, - AoA1 = Zkr2(k+j)(l - e2(k-j)Oi) 
j,k 

= E kr2(k+j)2(j - k)Oi + o(6) 
j,k 

= 20i(B 2- BoB2) + o(6) 

and 

(2.19) B02- jAO2 - 2 Jr2(k+j)(l -e2(k-j4)i) 
j,k 

- Z r2(k+i)2(k _ j)202i2 + o(02) 
j,k 

- 402(BoB2-B 2) + 0(02). 

Hence, recalling that Do = Bo - IAo12,we see that 

(2.20) ~BOB, - A0A1 B~ 
2 

_BB2 + o(6) 
(2.20) Do g ( )(BoB2-B2 + ?(02))1/2 

-sgn(6)i(BoB2 - B 2)1/2 + o(6). 

Combining (2.17) and (2.20), we get the desired limits expressing the jump 
discontinuity on the real axis. o 

Proof of Theorem 1.1. Without loss of generality, it suffices to consider regions 
Q that are either regions that do not intersect the real axis or polar rectangles 
that do intersect the real axis. We begin by considering a region Ql that does not 
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intersect the real axis. Applying Stokes' theorem to the expression for E v,n (Q2) 
given in Proposition 2.1, we see that 

E vn (2) = --a F(z, z)dxdy. 

Note that we are now writing F(z, z) to emphasize the fact that F depends on 
both z and z. Letting the dagger symbol stand for the derivative with respect 
to z, we see from Lemma 2.2 that 

OF { {(B0D0 + B0 -A0A0)(BtD0 + BjDt + Bt + B0Bt -AAI) 

-(B1Do + BOB, - AoA1)(BtDo + BoDt + 2BoBt - AAo)} 

/(BoDo + B-2 - 
JAo12)2. 

From their definitions, it is easy to verify that 

Bt =-,B Alo =2A, Bt = 2 
0z z ' 

Recalling that D0 = o - IA12, we get that 

Dt _ BOB, - AoAj 
o- zD0 

Substituting these formulas for the derivatives into the expression given above 
for OF/Oz and then engaging in tedious algebraic simplifications (a computer 
algebra package such as Mathematica would be useful here, but we confess that 
we did this by hand), we eventually arrive at the fact that (7rz)-1OF(z, z)/0z 
equals the expression given in Theorem 1.1 for hn . 

Now consider a polar rectangle that covers a portion of the real axis. In other 
words, let Q2 be the angular interval (-0, 0) crossed with a radial interval 
(ro, ri) (we have assumed without loss of generality that the polar rectangle 
does not intersect the negative part of the real axis). Writing down the contour 
integral for E vn (2) given by Proposition 2.1 and letting 0 tend to 0, we see 
that 

E vn((ro, rj) 1 frI 
F(r-)-F(r+)dr 

J7ri r 

where vn((ro, ri)) denotes the number of zeros in the interval (ro, ri) of the 
real axis and 

F(r-)= lim F(z) and F(r+)= lim F(z). 
z-*r: Im(z)<O z-*r: Im(z)>O 

Hence, from Lemma 2.2, we see that 

gr 1 F(r-) - F(r+) B0B2 - 

gn(r)= 2- i r 7rrBo 

This completes the proof. o 
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3. LIMITING INTENSITY 

In this section we study the limits obtained by letting n tend to infinity. As 
mentioned in the introduction, these limits can be viewed as intensity functions 
for the limiting random power series. We begin by proving Theorem 1.2. 

Proof of Theorem 1.2. The sums used to define the functions Bk and Ak can 
be summed explicitly. Recalling the functions A and B defined by (1.5) and 
(1.4), respectively, we have 

(3.1) Bo = B-IzI2nB, 

(3.2) B1 = IZ12B2 - (n Iz12nB + Iz12n+2B2) 

B2 = Iz12(1 + Iz12)B3 

(3.3) - (n21ZI2nB + 2nIZI2n+2B2 + IZI2n+2(1 + IZ12)B3) 

(3.4) Ao = A-z2nA, 

(3.5) A1 = z2A2 _ (nz2nA + z2n+2A2) 

For Izl < 1, we have the following limits: 

(3.6) lim B0 = B, 
n---o,o 

(3.7) lim B1 = Iz12B2 n---o,o 

(3.8) lim B2 = IZ12(1 + IZ12)B3, n---*oo 

(3.9) limA0=A, 
n---*oo n~ 

~~ 2 (3.10) lim A1 = z2A2. 
n-*oo 

Using these limits, it is easy to check that 

lim (B2BO2-BOB1) - I ZI2B5 

and 

lim (-B21Ao12-BoIAI12+Bi(AoAI +AoA1)) 

- -IzI2BIAI2 (B2 + IZB - zAI2) 

Then, using the definitions of A, B, and D, we see that 

IZB - zA12 = D2. 

Substituting these ingredients into the expression given in Theorem 1.1 for hn 
and simplifying, we find that 

(3. 1 1 ) lim hn = Iz12B5 - IZ12BIA12 (B2 + IZB - zAI2) _BD (3.11) nizo 7tIZ12D3 7 

The case I zI> 1 is more tedious (and less interesting!). We can either refer to 
the inversion symmetry formula (1.8) or we can compute in a manner similar 
to the I z < 1 case. Opting for the detailed computation, we note that this 
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time we must keep track of terms involving the three highest orders: n2 z12n, 

nIz12n, and Iz12n. Then we compute the numerator of the right-hand factor 
in the expression given in Theorem 1.1 for hn and we discover that the two 
highest order terms cancel out, leaving terms of the order Iz12n as the highest 
remaining order. Indeed, 

B2BO - BOB2 = _jzj6njzj2B5 + o(Izj6n) 

-B2Ao12 -BoIAI 12 + B1(AoA, + AoAI) 

=IzIj6nZI2BIAI2 (B2 + IzB-zAI2) + o(Iz6n), 

and 
Do = IzI4nD2 + O(Iz14n). 

Hence, the numerator and denominator of the right-hand factor both have IzI6n 
as their highest order terms, so this factor can be canceled. For the left-hand 
factor, both numerator and denominator have IzI4n as their highest order terms. 
Eliminating these and passing to the limit, we get 

(3.12) lim hn = BD 

Bearing in mind that B > 0 for IzI < 1 and B < 0 for I zI> 1, we see that 
(3.11) and (3.12) can be combined to give the formula asserted for h. 

The same method is used to find limn 0o gn . Indeed, for IzI < 1, we use 
(3.6), (3.7), and (3.8) to see that 

lim gn =-B. 
n- .oo 7r 

For Izi > 1, we retain the three highest order terms from (3.1), (3.2), and 
(3.3). As before the two highest order terms cancel out in the expression for 
BOB2 - B2, leaving us with 

BOB2 - B2 = IzI4nlzl2B4 + O(Iz14n). 

From this expression, we easily see that 

lim gn =--B, n-- oo 7r 

which completes the proof. o 

4. ASYMPTOTICS FOR THE NUMBER OF ROOTS 

In this section we derive limiting expressions for the expected number of 
zeros in disks and sectors. We start with the disk, B(r), of radius r centered 
at 0. 

Theorem 4.1. For r < 1, 

lim Evn (B(r))= _2 +_ 0) 
n--+o,o1 2r 0( ) 
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Proof. From Proposition 2.1, we have that 

If 1 
E vn (B(r)) =-| -F(z)dz 

27' i lB(r) Z 

= 

2~F(z)dO. 

Now, applying the bounded convergence theorem, we see that 

I 2,r 
lim Ev (B (r)) = - lim F(z)dO n--oco 27z J n-- oo 

and, using the expression given in (2.15) for F, we get that 

lim F(z) = Iz12B2D + BIzI2B2-AAz2A2 
limc) (B +D)D 

Adding and subtracting Iz12BIAI2 from the numerator and using the fact that 
Izl2B = r2/( - r2) on the contour of integration, we see that 

(4.1) lim F(z) = 1 r2 + B A) IZ2B_ - z2A 

From the definitions of A, B, and D, it is easy to check that 

Izl2B-z2A (zI12 _ Z2) AB 

and that 
D = 211m(z)IBIAI. 

Hence, the second term on the right in (4.1) simplifies to 

(4.2) (1 - r2) IAIA(r2 - z2) 
(4.2) -r 2). ~2 (1 + 211m(z) IIAI1) IlIm(z)lI 

and so the proof will be complete if we show that the integral of this expression 
over the circle of radius r is bounded. To this end, we note that the triangle 
inequality combined with the fact that I sin 0 1 = I I - e2ij 1/2 gives us 

(4.3) /2(1 + 211m(z)HIAI) JIm(z)l dO ? rj i - r2e2i012 do. 

The integral on the right-hand side can be integrated explicitly: 

I - r2e2iO 12 =(1 -r2)(1+ r 

Combining (4.4), (4.3), and (4.2), we get that the second term in (4.1) is 
bounded by 27rr/(1 + r2). This completes the proof. o 

Theorem 4.2. For s > 0, 

lim E -vn -B(e-sl2n) (1 es(1 +s)) = 1 s +(s). 
n-*Coo ni V~~) s(1 - e-s) 2 1 2_ 
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Proof. We begin as we began the proof of the previous theorem with 
'J 2,r 

E v(B(r)) = - JF(z)d6, 

where 
B1 + BoBI-AoA1 

F(z)=D 
() Bo + Do 

and this time 
r = e-s/2n 

and 
i6 z =re 

The theorem then follows from the dominated convergence theorem and the 
following easy-to-derive asymptotic formulas (the last two holding everywhere 
except 0 = 0 and 0 = n): 

lim -Bo = lim -Do = (I1 - e-s)ls, n-oo n n-oo n 

lim -2B1 = (1- es(l +s))/s2, 

lim-Ao = lim-A1 = O. o 
n-oo n n-oo n 

Let S(60, 01) denote the sector of the complex plane consisting of all points 
whose argument lies between 00 and 01 . The next theorem shows that asymp- 
totically the zeros are uniformly distributed in argument. Of course, the 
2/ir log n real zeros disappear since we are normalizing by dividing by n . 

Theorem 4.3. For each sector S(6O, 0i) that does not intersect the real axis, 

lim-E vn (S(o,i 0)) = 27 r 0 
n-oo n 27r 

Sparo and Sur [ 14] obtained the analogous result for complex Gaussians using 
a very general and elegent result of Erdos and Turan [4] ( Theorem 8.1). 

Proof. According to (1.7), it suffices to prove the analogous limit for the inter- 
section, P(0O, 01), of S(60, 01) with the unit disk. By Proposition 2.1, 

E vn(P(o, a 0)) = - j1 (F(rei0o) - F(rei0l)) dr + 2 F(eio)d6, 

where F is given by (2.2). Note that the first integrand is bounded uniformly 
in n even at r = 0. To see this, we take note of the following limits: 

limBo = limAo = 1, 

lin Do 0, 

lim-B1 = 1, 
r- 0 r 
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and 
1 BOB, - AOA1 eio 

lim -=- * 
r-o r Do 2sin6O 

This last limit is easy to obtain from expressions (2.18) and (2.19). Hence, from 
(2.17) we see that 

lim- F(rei6) = 1 -2sin 
r--*o r2si 

and so we can interchange limit and integration to see that in the limit l/n 
times the first integral vanishes. 

To study the limiting behavior of 1/n times the second integral, we first 
rewrite F as 

F B_ AOA1 
Do Do(Bo+DO)' 

Now, for z = ei-, 

Bo = n, BI = ( - ) and Do= n2-IAoI2. 2 
Since Ao and Al are bounded on P(6O, 6k), it follows that 

lim 1 B, = 1 
n-oo n Do 2 

and 

lim-I AAI- 0 
n-oon DoD(Bo + DO) 

Therefore, 

lim IF(eio) - 
n-oo n 2 

and so the dominated convergence theorem implies that 

lim IE vn (P(O,X 0)) = 4ol n-+oo fl47 

This completes the proof. o 

5. NUMERICAL COMPUTATION 

In this section, we describe the computer program used to produce Figures 
1 to 5. Each figure shows two plots. On the left is a grey-scale plot of the 
intensity functions gn and hn . On the right is a plot of 20,000 zeros obtained 
by generating random polynomials and explicitly finding their zeros. 

The intensity plots appearing on the left were produced by partitioning the 
given square domain into a 256 x 256 grid of "pixels" (i.e., small squares) and 
computing the intensity function in the center of each pixel. The grey-scale 
was computed by assigning white to the pixel with the smallest value and black 
to the pixel with the largest value and then linearly interpolating all values in 
between. This grey-scale computation was performed separately for hn and for 
gn (which appears only on the x-axis) and so no conclusions should be drawn 
comparing the intensity shown on the x-axis with that shown off of it. 

Of course, the intensity function gn is one-dimensional and therefore it 
would be natural (and more informative) to make separate plots of values of 
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2.5r 2.5 

.... .... ...... I '&'.te' 

-2.5 -2 .... -2.5 
-2.5 2.5 -2.5 2.5 

FIGURE 1. Random quadratics (n = 3). In this figure and 
the next several, the left-hand plot is a grey-scale image of 
the intensity functions hn and gn (which is concentrated on 
the x-axis). The right-hand plot shows 20,000 roots from 
randomly generated polynomials. Subsequent captions give 
more information pertaining to each of these figures. 

2.5 2.5 

.. .,,. ~* .^ . . - -. 

~~~~~~~~~~~~~~~~~~~~~~....... I_ ........;; 

...>W... 

--; ------ 

-2.5 -2.5 J 

-2.5 2.5 -2.5 25 

FIGURE 2. Random cubics ( n = 4). Note that, for the left-hand 
plots, the grey-scales for hn and gn are produced separately and 
in such a way that both use the full range from white to black. 

gn verses x, but such plots appear in many places (see, e.g., [8]) and so it 
seemed unnecessary to produce them here. Suffice it to say that gn is a density 
whose mass lies primarily near ? 1 . 

The 20,000 zeros plotted on the right were produced by a novel root-finding 
algorithm, which we shall describe briefly. Given a polynomial P, the algo- 
rithm that finds its zeros in a given square R is recursive. Let S denote the 
smallest disk that contains R. Using the argument principle, we can compute 
the number of zeros in S: 
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2.5 2. 5 

..... . . . . . . . . . . . . -. --. s.-... ....... ..a. 

.... -. 5 -2..5..I. . 

2 S ~2.. ............. 5 2.5 2.5 

FIGURE 3. Random quartics ( n = 5). Note that, for the night- 
hand plots, most if not all of the 'pixels" on the x-axis have 
been hit by at least one root. A more accurate image for the 
x-axis would have been obtained had we used a grey-scale to 
indicate how many times each pixel on the x-axis was hit. 

25 2l .5......................... A. 

..d,''.. . . . . . . . . . . .ntX 
.. . ! ... .... -. . < 

-2 . -2.S 

-2.5 2.5 -2.5 2.5 

FIGURE 4. n =1. 

If h(S) is zero, then we stop since there are then no zeros in R. Otherwise, 
we compute the sum of the zeros using the following analogue of the argument 
princilpe: 

(5.2) a(S) = , z= 1 f zP'(z)dz 

Here, the z1's denote the zeros of P. The ratio 

a(S) = cr(S)/v(S) 

is then the barycenter of the zeros contained in S (counting multiplicities). 
Next, let B be a disk of very small radius centered at a!(S), and again using 
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FIGURE 5. n = 36. 
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........... . ..... 
....... 
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FIGURE 6. Limiting intensity (using a logarithmic grey-scale). 

the argument principle count the number of zeros in this disk. If this number 
equals v (S), then there is only one zero in S: it is at a(S) and has multiplicity 
vi(S). Hence, again we stop (but first, we check whether the zero is in fact in 
R and if it is, we add it to our list of zeros found so far). In all other cases, 
there are still two or more zeros to be found and so we partition the square into 
four subsquares and recursively call this same procedure on those subsquares. 
Except for discussing how to compute the contour integrals, this is a complete 
description of the algorithm used to produce the right-hand plots. 

The contour integrals in (5.1) and (5.2) are computed as follows. First we 
compute vi(S). To do this, we begin by simply using a discrete approximation 
to the integral consisting of eight points spread equally around the boundary 
of S. Then we check to see if v(S) is close to being an integer. If it is, we 
are done. If it is not, then we spread eight more points midway between each 
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point already used in the sum and update the sum with these points. Again 
we check nearness to integrality. We continue in this way until the integrality 
condition is satisfied. The contour integral in (5.2) is then computed using the 
same number of points as was used in (5.1). 

6. FINAL COMMENTS AND SUGGESTED FUTURE RESEARCH 

The machinery developed in this paper can be applied in many situations 
that we have not covered. For example, if the coefficients are assumed to be 
independent complex Gaussians (instead of real), then we can apply the same 
methods and in fact all computations are simpler. In this case, the intensity 
function does not have mass concentrated on the real axis (i.e., gn = 0) and the 
intensity function is rotationally invariant. Furthermore, by going through the 
calculations, one discovers that hn is just the square of Kac's intensity (with a 
different lead constant): 

_ BoB2 - B2 
hn =1z2B0 

The classic paper of Hammersley [5] covers this case (among others). Also, the 
random power series version was considered in [3]. 

In the case of real polynomials, Kac's formula has been extended to other 
distributions besides the normal law for the coefficients as well as in many other 
directions (see [2]). In view of the interest in zeros indicated by the enormous 
literature on the real zeros it is amazing that the simple results given here for the 
complex zeros were not found earlier. One extension [ 10, 11 ] considers replacing 
the normal distribution by symmetric stable distributions, S(a), 0 < a < 2, 
and obtains that the expected number of real zeros is asymptotic to c(a) log n 
as n tends to infinity. The coefficient c(a) decreases from 1 to 2/7r as a 
goes from 0 to 2 and is given by an explicit formula. Stevens [13] showed 
that if the coefficients are independent and merely in the domain of attraction 
of the normal law, then the expected number of real zeros follows the same 
asymptotic, 2 log n, and Ibragimov and Maslova [6] proved the corresponding 
result for the case when the coefficients are independent and in the domain of 
attraction of the stable law with parameter 1 < a < 2. 

For the complex case, we do not see how to extend any of our results to a 
domain of attraction statements. Moreover, we do not know what the change 
will be for hn(a, x) if the coefficients are symmetric stable instead of normal. 
The techniques of [10, 11] do not seem to extend easily to the complex case. 
Needless to say, the same holds for coefficients merely within the domain of 
attraction of a symmetric stable law. However, we conjecture that the domain 
of attraction cases follow the same asymptotics as the corresponding stable law, 
in particular if a = 2. 

Let pj denote the norm of the zero of Pn (z) that is inside the unit circle 
and the j-th closest to the unit circle. The results of this paper indicate that 
pj = 1 - Xj/n2, where the random variables XI, X2, ... form a standard 
Poisson process. Similarly, the Kac formula for the real zeros suggests a similar 
conjecture except with a division by n instead of n2. If these two statements 
are correct, then the complex zeros are much closer to the unit circle than the 
real zeros are to ?1 . 
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Assuming that the above conjectures are correct, there is a speculative corol- 
lary/application to Littlewood's problem of studying the behavior as n tends 
to infinity of the random variable defined as 

(6.1) m, = inf Pn(eiO) 
O<6<27r 

i.e., the infimum on the unit circle of Pn(z). Here, the coefficients are assumed 
to be independent symmetric ? 1 random variables. Konyagin [9] gave a new 
estimate for m, by a rather complicated argument. We cannot obtain his 
delicate estimate by our methods, but there is at least some hope that this can 
be done provided that some further developments can be carried out. One 
would have to prove that the conjecture that the nearest complex zero to the 
unit circle is within 0(l/n2) holds not only for normal coefficients but for ? 1 
coefficients. As pointed out privately by A. M. Odlyzko, it would then follow 
from Bernstein's theorem that an alternate proof to Konyagin's estimates would 
be obtainable. 
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