
NUMBERS WITH SMALL/LARGE DIVISORS SATISFYING SOME
RECURRENCE RELATION

ABSTRACT. I suggest some possible projects, where we study numbers whose divisors
satisfy certain recurrence relation. I also give some contexts for open-ended projects
regarding Schreier sets and what I call Schreier numbers.

1. PROJECT 1: ELEMENTARY NUMBER THEORY FLAVOR

Let N be a positive integers. The set of small divisors of N is

SN := {n ≤
√
N : n|N}

and the set of large divisors of N is

LN := {n ≥
√
N : n|N}.

If we do not want to include the obvious divisors, namely 1 and N , we can define the
corresponding set of “nontrivial" small/large divisors

S ′
N := {n ≤

√
N : n > 1, n|N} and L′

N := {n ≥
√
N : n|N, n < N}.

In 2018, Iannucci [11] characterized all positive integers N with SN in an arithmetic
progression (see [11, Theorem 4].) Continuing the work, Chu [4] characterized all pos-
itive integers N with L′

N in arithmetic progression (see [4, Theorem 1].) Recently,
Chentouf [3] generalized Iannucci’s result by considering a more general recurrence
relation than arithmetic progression, namely linear recurrence of order at most 2 (see
[3, (2)] for the definition) and characterized all integers N with SN satisfying the recur-
rence.

Project goal #1: Characterize all integers N with L′
N satisfying a linear recur-

rence of order at most 2, which generalizes [4, Theorem 1] the same way Chentouf
generalizd [11, Theorem 4]. See also the discussion at the beginning of page 5 of
[3].

Let us now describe Project goal #2. In characterizing all numbers N whose SN

are in arithmetic progression, the trivial divisor 1 played a crucial role in Iannucci’s
argument. Motivated by this, [5, Theorem 1.1] characterized all numbers N whose S ′

N

are in arithmetic progression. The argument for [5, Theorem 1.1] is a bit more involved.
In the same manner, the trivial divisor 1 was used in the argument of Chentouf. So, the
next goal is

Project goal #2: Characterize all integers N with S ′
N satisfying a linear recur-

rence of order at most 2.
Project goal #3: What are some interesting (not too rigid) structure to put on

S ′
N and L′

N? Can we characterize these N? (This is an open-ended project.)
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2. PROJECT 2: COMBINATORIAL FLAVOR

2.1. Background. A set A ⊂ N is said to be Schreier if either A is empty or minA ≥
|A|, where |A| is the cardinality of set A. For example, {2, 3} and {4, 7, 20} are Schreier
sets, while {1, 2} and {4, 5, 10, 20, 30} are not. Schreier sets have their roots in Banach
space theory and Ramsey-type theorems for subsets of N.

The Fibonacci sequence is defined as follows: F1 = F2 = 1 and Fn = Fn−1 + Fn−2

for n ≥ 3. A. Bird [2] showed that for each n ≥ 1, if we let

An := {A ⊂ {1, . . . , n} : n ∈ A and minA ≥ |A|},

then |An| = Fn. This was quite a neat and surprising result. See [2] for a bijective proof.
Following the discovery by A. Bird, there has been research on various recurrences
produced by counting Schreier-type sets (see [1, 7, 8, 9, 10, 6, 12]). In particular, [6]
showed another way to obtain the Fibonacci sequence from counting Schreier sets. [1]
studied the more general condition pminA ≥ q|A|, where p, q ≥ 1 and showed a
relation between Turán graphs and Schreier-type sets. [7] gave a combinatorial proof
of the above relation and generalized the relation by modifying Tuán graphs. Finally,
[8, 9, 10, 12] showed other recurrences from couting Schreier-type sets.

2.2. Project goals. An open question is whether we can produce the tribonacci num-
bers (see A000073) from couting Schreier sets in certain way. What about tetranacci
(see A000078) numbers? Besides, we can explore what other interesting sequences that
counting Schreier-type sets give us.

3. PROJECT 3: ANALYTIC/ELEMENTARY NUMBER THEORY FLAVOR

3.1. Definitions.

Definition 3.1. A positive integers N is said to be Schreier if S ′
N is Schreier. A number

is said to be non-Schreier if it is not Schreier.

Definition 3.2. Let S be a set of positive integers. The upper and lower, respectively,
density of S is

d(S) = lim sup
N→∞

|{n ∈ S : n ≤ N}|
N

and

d(S) = lim inf
N→∞

|{n ∈ S : n ≤ N}|
N

.

If d(S) = d(S) = d, we say that S has density d and write d(S) = d.

Remark 3.3. For all N , the set LN is Schreier. Indeed, minLN ≥
√
N , while

|LN | = |SN | ≤
√
N.

Hence, it only makes sense to define a Schreier number by requiring the set of small
divisors to be Schreier.

https://oeis.org/A000073
https://oeis.org/A000078
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3.2. Observations and questions.

Example 3.4. All primes are Schreier. The product of two primes is also Schreier.

Proof. For each prime p, Sp = ∅ and so, p is Schreier. If n = pq, where p < q are
primes, then Sn = {p}, which is Schreier. □

Proposition 3.5. The gap between two consecutive non-Schreier numbers is at most 6.
Furthermore, for k = 1, 2, a gap of k appears infinitely often.

Proof. Let N be a non-Schreier number. We can assume that N ≥ 36. (The claim
holds for N ≤ 36.) If N ≡ k mod 6, for some 0 ≤ k ≤ 5, then 6|(N + 6− k) and so,
{2, 3, 6} ⊂ SN+6−k. Hence, N + 6− k is non-Schreier. Therefore, the gap between N
and the next non-Schreier number is at most 6− k.

We now show that a gap of 1 appears infinitely often. Consider the pair of integers
(405+630k, 406+630k) for some k ≥ 1. Since {3, 5, 9, 15} ⊂ S405+630k for k ≥ 1, we
know that 405 + 630k is non-Schreier for k ≥ 1. On the other hand, since {2, 7, 14} ⊂
S406+630k for k ≥ 1, 406 + 630k is non-Schreier for k ≥ 1. Therefore, for each k ≥ 1,
(405 + 630k, 406 + 630k) is a pair of non-Schreier numbers that are 1 apart.

Next, we show that a gap of 2 appears infinitely often. Consider the pair of integers
(40 + 70k, 42 + 70k) for some k ≥ 3. Since {2, 5, 10} ⊂ S40+70k and {2, 7, 14} ⊂
S42+70k, both integers are non-Schreier. By the Dirichlet’s theorem for primes in arith-
metic progression, we know that 41 + 70k is prime and thus, is Schreier for infinitely
many k. We conclude that 40+70k and 42+70k are consecutive non-Schreier integers
infinitely often. □

Corollary 3.6. Let S be the set of all non-Schreier numbers. Then d(S) ≥ 1/6.

Problem 3.7. Can we improve the lower bound of 1/6? Can we show d(S) actually
exist?

Problem 3.8. Let S be the set of all Schreier numbers. What can we say about d(S)?

Problem 3.9. Show that for any 3 ≤ k ≤ 6, a gap of k between consecutive non-
Schreier numbers appears infinitely often.

Problem 3.10. Show that there are arbitrarily large gaps between two Schreier numbers.

Proposition 3.11. There are arbitrarily long arithmetic progressions of Schreier num-
bers. There are arbitrary long arithmetic progressions of non-Schreier numbers.

Proof. From the Green-Tao theorem, we know that there are arbitrarily long arithmetic
progressions of primes in arithmetic progression. Since primes are Schreier, we have
arbitrarily long arithmetic progressions of Schreier numbers.

For arbitrarily long arithmetic progressions of non-Schreier numbers, consider the
sequence (36 + 6n)∞n=1. For each n ≥ 1, we have 2, 3, 6 ∈ S36+6n. Hence, 36 + 6n is
non-Schreier. □

Problem 3.12. Can we show that there are arbitrarily long arithmetic progressions of
non-Schreier numbers without using the Green-Tao theorem?
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