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Polymath-REU 2022: Miller Proposed Projects

Mentor: Steven Miller, Williams College (email: syjm1@williams.edu)

Miller's homepage: https://web.williams.edu/Mathematics/symiller/public_html/

Greetings. I am excited to be involved in the inaugural Polymath-REU Program. I currently serve as the Director of the
Williams SMALL REU, and have been mentoring students for over two decades. I earned a PhD from Princeton working
with Peter Sarnak and Henryk Iwaniec in analytic number theory (specifically, low-lying zeros for families of elliptic curves).
Below are some general areas of problems I am proposing for the Polymath-REU project. Different projects will be
supervised with different colleagues of mine.
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Ramsey Theory: Years ago some of my SMALL REU students and I looked at non-commutative versions of some standard
problems in the field, specifically avoiding 3-term geometric progressions. We have working notes here. Most of a paper is done,
and in addition to finishing things off there are opportunities to explore related problems.

Classically, there has been interest in how large a set can be while still avoiding arithmetic or geometric
progressions. In a 1961 paper Rankin [Ran] introduced the idea of considering how large a set of integers
can be without containing terms which are in geometric progression. He constructed a subset of the integers
which avoids 3-term geometric progressions and has asymptotic density approximately 0.719745. Brown
and Gordon [BG] noted that the set Rankin considered was the set obtained by greedily including integers

subject to the condition that such integers do not create a progression involving integers already included
in the set.

This question has been generalized to number fields [BHMMPTW] and polynomial rings over finite
fields [AFGMMMM]. The purpose of [BHMMPTW] was to see how changing from subsets of Z to subsets
of number fields affected the answer, while in [AFGMMMM)] it was to see how the extra combinatorial
structure of IF;[x] affected the tractability and features of the problem. In our case, we wish to see how
non-commutativity affects the answer.

The first half of this paper (Sections 2 through 5) is dedicated to studying the problem in the Hurwitz
order quaternions, Qpy, (see Section 2 for a review of their properties). We consider sets avoiding geometric
progression of the form a, ar, ar*> with a,r € Quyy, being careful to specify the order of multiplication due
to the non-commutativity of the algebra. We produce some bounds on the supremum of upper densities of
sets avoiding 3-term geometric progressions, and use Rankin’s greedy set to construct a similar set avoiding
3-term geometric progressions in the Hurwitz order quaternions. We also discuss the peculiarities of this
setting in Section 5. The second half (Section 6) is dedicated to studying the question in the setting of free
groups. We arrive at the following results.

Theorem 3.1, Let myyy,, be supremum of upper densities of subsets of Qpyyr containing no 3-term geometric progres-
sions. Then

946589 < myyyy < 952381, (11)

Theorem 4.2. Let Qran be the set of Hurwitz quaternions with norm in Rankin's greedy set (avoiding 3-term
geometric progressions in Z). Let A3(Z) be the greedy set avoiding 3-term arithmetic progressions. The asymptotic
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Theorem 6.2. Lef G = (x,y: = yz = 1) be the free group on two generators each of order two. Order the group
as W = (1,x,y, xy, yx, xyx, yxy, xyxy, yxyx, ... ) and take the set G formed by greedily taking elements that don't
form a 3-term progression with previously added ones. Then
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Elementary Number Theory: Small/large divisors satisfying
recurrence relations:

These projects are from a former SMALL REU student of
mine, Hung Viet Chu at lllinois; see here for full details; one
of the problems is pasted to the right.

Let N be a positive integers. The set of small divisors of N is
Sy = {n < VN : n|N}
and the set of large divisors of N is
Ly == {n=VN : n|N}.

If we do not want to include the obvious divisors, namely 1 and NV, we can define the
corresponding set of “nontrivial” small/large divisors

S ={n<vVN:n>1n|N}and Ly, = {n=>+VN : n|N,n < N}.

In 2018, lannucci [11] characterized all positive integers NV with Sy in an arithmetic
progression (see [11l Theorem 4].) Continuing the work, Chu [4] characterized all pos-
itive integers V with LY, in arithmetic progression (see [4. Theorem 1].) Recently,
Chentouf [3] generalized Iannucci’s result by considering a more general recurrence
relation than arithmetic progression, namely linear recurrence of order at mosit 2 (see
[3L (2)] for the definition) and characterized all integers N with Sy satisfying the recur-
rence.

Project goal #1: Characterize all integers N with L', satisfying a linear recur-
rence of order at most 2, which generalizes [4] Theorem 1] the same way Chentouf
generalizd [11l Theorem 4]. See also the discussion at the beginning of page 5 of
[3].

Let us now describe Project goal #2. In characterizing all numbers N whose Sy
are in arithmetic progression, the trivial divisor 1 played a crucial role in lannucci’s
argument. Motivated by this, [5| Theorem 1.1] characterized all numbers N whose S},
are in arithmetic progression. The argument for [5| Theorem 1.1] is a bit more involved.
In the same manner, the trivial divisor 1 was used in the argument of Chentouf. So, the
next goal is

Project goal #2: Characterize all integers N with S, satisfying a linear recur-
rence of order at most 2.

Project goal #3: What are some interesting (not too rigid) structure to put on
5% and L ? Can we characterize these N'? (This is an open-ended project.)



f-palindromes: These projects are from a colleague of mine, Daniel Tsai, at Nagoya University; see here.

The concept of v-palindromes is introduced in [[] and subsequently four manuscripts [3, 2, 5, 4]
were written about them. Consider the number 198 whose digit reversal is 891. Their prime
factorizations are

198 =2.3%.11, (1)
891 = 3. 11, (2)

and we have
24+ (3+2)+11=(3+4)+11. (3)

In other words, the sum of the numbers “appearing” on the right-hand-side of () equals that
of (). We now define v-palindromes rigorously, but our definition is slightly different from that

in [0, 3, 2, 5, 4.

Definition 1. Let 5> 2, L > 1, and 0 < ag,aq,...,ar_1 < b be any integers. We denote
L-1 )
(ap—1--arag)y = Y _ aib’. (4)
i=0

Definition 2. Let the base b > 2 representation of an integer n > 1 be (ar_1---a1a0)p. The
b-reverse of n 1s defined to be

rp(n) = (apay - - ar—1)p. (5)
So for example r1(198) = 891.

Definition 3. Let f: N — C be any function and b > 2 an integer. An integer n > 1 is an
f-palindrome in base b if f(n) = f(rp(n)). If in addition n # r4(n), then n is a nonpalindromic
f-palindrome in base b.

Definition 4. The additive function v: N — Z is defined by setting v(p) = p for primes p and
v(p”) = p+ a for prime powers p* with a > 2.

With these definitions, 198 is a nonpalindromic v-palindrome in base 10. We explain the
naming “palindrome”. If f = idy (or is just injective), then an f-palindrome in base b is simply
a palindrome in base b.

The following are sequences of nonpalindromic v-palindromes in base 10.

18,108, 1998, ..., (6)
18, 1818, 181818, ... (7)

In (B), we simply keep increasing the number of 9's in the middle; in (@), we simply keep
concatenating another 18,
Influenced by (B), we propose the following problem.

Problem 1. Try to find other sequences like (B), where we simply keep increasing the number
of one of the digits, all of whose terms are nonpalindromic f-palindromes in base b, for the same

f and b.


https://web.williams.edu/Mathematics/sjmiller/public_html/polymathreumiller/f-palindromes.pdf

Zeckendorf Games: Baird-Smith, Epstein, Flint and Miller
devised a game based on the Fibonacci numbers (1, 2, 3,5, ...
and in general F_,, = F_+F_) and one of their interesting
properties, the Zeckendorf Decomposition (every integer can
be written uniquely as a sum of non-adjacent Fibonacci
numbers). It was proved that every game terminates, and a
non-constructive proof shows that Player Two always has a
winning strategy if the starting value is at least 3). There are still
many open questions about this game and its generalizations.
See
https://web.williams.edu/Mathematics/similler/public_html/m
ath/papers/ZeckGameCANT10.pdf,
https://web.williams.edu/Mathematics/similler/public_html/m
ath/papers/ZeckGameGeneral FibQ10.pdf and
https://web.williams.edu/Mathematics/similler/public_html/m
ath/papers/FQgame30.pdf. | have a 40 minute talk on the
subject: From Monovariants to Zeckendorf Decompositions and
Games, and Random Matrix Theory, Williams College (7/14/21)
and Texas Tech

(7/29/21). pdf (video: https://youtu.be/Kayru V75V8)
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