f-PALINDROMES

DANIEL TSAI

The concept of v-palindromes is introduced in [T] and subsequently four manuscripts [$[3,[2,5,[4]$ were written about them. Consider the number 198 whose digit reversal is 891 . Their prime factorizations are

$$
\begin{align*}
& 198=2 \cdot 3^{2} \cdot 11, \tag{1}\\
& 891=3^{4} \cdot 11, \tag{2}
\end{align*}
$$

and we have

$$
\begin{equation*}
2+(3+2)+11=(3+4)+11 . \tag{3}
\end{equation*}
$$

In other words, the sum of the numbers "appearing" on the right-hand-side of (\mathbb{L}) equals that of (Z). We now define v-palindromes rigorously, but our definition is slightly different from that in [1], [3, [2, [5, [4].

Definition 1. Let $b \geq 2, L \geq 1$, and $0 \leq a_{0}, a_{1}, \ldots, a_{L-1}<b$ be any integers. We denote

$$
\begin{equation*}
\left(a_{L-1} \cdots a_{1} a_{0}\right)_{b}=\sum_{i=0}^{L-1} a_{i} b^{i} . \tag{4}
\end{equation*}
$$

Definition 2. Let the base $b \geq 2$ representation of an integer $n \geq 1$ be $\left(a_{L-1} \cdots a_{1} a_{0}\right)_{b}$. The b-reverse of n is defined to be

$$
\begin{equation*}
r_{b}(n)=\left(a_{0} a_{1} \cdots a_{L-1}\right)_{b} . \tag{5}
\end{equation*}
$$

So for example $r_{10}(198)=891$.
Definition 3. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be any function and $b \geq 2$ an integer. An integer $n \geq 1$ is an f-palindrome in base b if $f(n)=f\left(r_{b}(n)\right)$. If in addition $n \neq r_{b}(n)$, then n is a nonpalindromic f-palindrome in base b.

Definition 4. The additive function $v: \mathbb{N} \rightarrow \mathbb{Z}$ is defined by setting $v(p)=p$ for primes p and $v\left(p^{\alpha}\right)=p+\alpha$ for prime powers p^{α} with $\alpha \geq 2$.

With these definitions, 198 is a nonpalindromic v-palindrome in base 10 . We explain the naming "palindrome". If $f=\operatorname{id}_{\mathbb{N}}$ (or is just injective), then an f-palindrome in base b is simply a palindrome in base b.

The following are sequences of nonpalindromic v-palindromes in base 10 .

$$
\begin{gather*}
18,198,1998, \ldots \tag{6}\\
18,1818,181818, \ldots \tag{7}
\end{gather*}
$$

In (四), we simply keep increasing the number of 9 's in the middle; in (\mathbb{U}), we simply keep concatenating another 18 .

Influenced by (${ }^{(6)}$), we propose the following problem.
Problem 1. Try to find other sequences like ($\mathbf{(I)}$), where we simply keep increasing the number of one of the digits, all of whose terms are nonpalindromic f-palindromes in base b, for the same f and b.

The sequence ($\mathbb{\square}$) inspired [\mathbb{I}, Theorem 1], which was subsequently developed into the more extensive [3]. We make the following definition.

Definition 5. Let the base $b \geq 2$ representation of an integer $n \geq 1$ be $\left(a_{L-1} \cdots a_{1} a_{0}\right)_{b}$. For integers $k \geq 1$, we define

$$
\begin{equation*}
n(k)_{b}=(\underbrace{a_{L-1} \cdots a_{1} a_{0} a_{L-1} \cdots a_{1} a_{0} \cdots \cdots a_{L-1} \cdots a_{1} a_{0}}_{k \text { copies of } a_{L-1} \cdots a_{1} a_{0}})_{b} \tag{8}
\end{equation*}
$$

So for example $18(3)_{10}=181818$. According to [3], statements such as the following theorems can be proved.

Theorem 1. For integers $k \geq 1$, the number $13(k)_{10}$ is a v-palindrome in base 10 if and only if (i) $6045 \mid k$ or (ii) $15 \mid k$ but $13 \nmid k$ and $31 \nmid k$.

Theorem 2. For integers $k \geq 1$, the number $17(k)_{10}$ is a v-palindrome in base 10 if and only if (i) $33790 \mid k$ or (ii) $280 \mid k$ but $7 \nmid k$ and $71 \nmid k$.

We propose the following problem.
Problem 2. While [3] is only for v-palindromes in base 10, the same reasoning might also work for f-palindromes in base b, for other choices of f and b. Try to characterise those choices of f and b such that the theory of [3] holds.

Finally, we also mention that the sequences (6) and (■) are actually parts of a larger family of nonpalindromic v-palindromes in base 10 indicated in [2 , Theorem 3].

References

[1] D. Tsai, A recurring pattern in natural numbers of a certain property, Integers 21 (2021), \#A32.
[2] D. Tsai, Repeated concatenations in residue classes, preprint, 2021. Available at http://arxiv.org/abs/ 2109.01798.
[3] D. Tsai, The fundamental period of a periodic phenomenon pertaining to v-palindromes, preprint, 2021. Available at http://arxiv.org/abs/2103.00989. (Integers, to appear with a different title)
[4] D. Tsai, The invariance of the type of a v-palindrome, preprint, 2021. Available at https://arxiv.org/abs/ 2112.13316.
[5] D. Tsai, v-palindromes: an analogy to the palindromes, preprint, 2021. Available at https://arxiv.org/ abs/2111.10211.

Nagoya University, Graduate School of Mathematics, 464-8602, Furocho, Chikusa-ku, Nagoya, JAPAN

[^0]
[^0]: Email address: shokuns@math.nagoya-u.ac.jp

