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Greetings again!

In this supplemental chapter we develop the theory of ordgistics in order to
prove The Median Theorem. This is a beautiful result in itsplut also extremely
important as a substitute for the Central Limit Theorem, alhalvs us to say non-
trivial things when the CLT is unavailable.



Chapter 1

Order Statistics and the Median Theorem

The Central Limit Theorem is one of the gems of probabilitys ¢asy to use and
its hypotheses are satisfied in a wealth of problems. Manysesibuild towards a
proof of this beautiful and powerful result, as it truly i®ftral’ to the entire subject.

Not to detract from the majesty of this wonderful result, leser, what happens
in those instances where it's unavailable? For examplepbtige key assumptions
that must be met is that our random variables need to have filgher moments,
or at the very least a finite variance. What if we were to cogrs@ims of Cauchy
random variables? Is there anything we can say?

This is not just a question of theoretical interest, of matagcians generalizing
for the sake of generalization. The following example frocor@omics highlights
why this chapter is more than just of theoretical interesir years many financial
models assumed that price changes were drawn from norntmawnariables; how-
ever, Mandelbrot (of fractal geometry fame) and others laagaed that these models
are inconsistent with real world data. They were led to tleigeh by looking at large
fluctuation days; the number of such days with very large ghanwas magnitudes
higher than normal theory predicts. In other words, the gbiliiy of observing as
many days with such high percentage drops in the major staukets under the
assumption that price changes come from normal distribatis so small that this
hypothesis must be discarded. In its place they suggest plwated model, which
at its core has Cauchy distributions and infinite variance.

Thus, if we (or our friends or colleagues) care about econsyitimight be more
than just an academic question as to what replaces the CeintiaTheorem when
the variances are infinite. The replacement involves, reotiban, but the median.
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Themedian iz of a random variabl& are all pointse such that

1 1
Prob(X <z) > 3 and Prob(X >z) > 3

If our density is continuous, any pointsuch that half the probability occurs before
2 and half occurs after is a median. We'll discuss this definition in much greater

detail below.

There is much that can be said and proved, at least in theadpasie when our
random variables are symmetric about some point (typithéyprobabilities will be
symmetric about the origin, so that the probability densisatisfied(z) = p(—x)).
For such distributions the median is the same as the mears imstead of looking
at the sample mean we can study the sample median; the ageasthat there are
situations where the sample median converges to a nicédisom while the sample
mean does not.

The exposition gets a bit involved; to simplify the desddps, it's convenient to
use big-Oh notation. We describe this in great detadPD REF. If you haven't
seen this notation before, you should spend some time rg&ddD REF now; if
you have seen this before, the quick summary below shoufitsuf

Definition 1.0.1 (Big-Oh Notation) A(x) = O(B(x)), read “A(z) is of order (or
big-Oh)B(z)", means there is & > 0 and anz, such that for allz > z, |A(z)| <
C B(z). This is also writterA(z) < B(z) or B(z) > A(x).

Big-Oh notation is a convenient way to handle lower ordemterFor example,
if we write F'(z) = 2 + O(2?), this means that astends to infinity, the main term
of F'(z) grows likez®, and the correction (or error) terms are at most some canstan
timesz?. Useful examples include fot e > 0, asz — oo we havex” = O(e®) and
logz = O(xf).

The main result is:

Median Theorem: Let a sample of size&. = 2m + 1 with n large be taken from
an infinite population with a density functiof{z) that is nonzero at the populatign
mediang and continuously differentiable in a neighborhoodiofThe sampling dis
tribution of the median is approximately normal with mgaand varianc%f([}w,

In many cases, this theorem is a good substitute for the &ldrnimit Theorem.
Note the commonalities between the two. Both involve anayef sample values,
and both have a sample statistic converging to a normalillison. There are,
however, major differences between the two. The most giaiih course, is that
we're looking at different quantities (the mean versus tleglian). The next is that
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the Median Theorem allows the density to have infinite varéarkinally, it's worth
noting that the Central Limit Theorem requires us to statlidarour sample statistic;
no such standardization is required here.

Before developing the analogue of the Central Limit Theofenthe median,
we study a subject of interest in its own right, order stagstThese will be essential
in our analysis of the median. In this chapter we’'ll use ressah the multinomial
distribution, Taylor series expansions, and Stirling’sniala; you should consult
those sections of the book if you have any questions on these.

1.1 Definition of the Median
Key points for this section:

1. The definition of the median.
2. Examples of finding the median.

3. Applications to estimating means.

The definition of the median is one of the most cumbersomerseatts you'll
find about a concept that seems obvious. It's quite unfoteyrs the informal defi-
nition, which works in many cases, sadly fails in some catbés failure requires us
to have the wordy monstrosity below.

The quick and painless definition of the median is the poirgngthalf the prob-
ability comes before it and half comes after it. As mentioabdve, this definition
isn't quite right, but it does express the general idea dyicks always, we’ll con-
sider our densities as either being discrete or continutesll first look at some
examples and use those to get a better sense as to what thaefigiition of median
should be.

Let’s study a discrete distribution first. Imagine we haveia flie. Then the
possible outcomes are 1, 2, 3, 4, 5 and 6, and each occurs withlplity 1/6. We
want to find a valug: such that half the probability occurs befgreand half occurs
afterwards. Looking at a plot of the cumulative distribatfanction (which we give
in Figure[1.1), we see thany number in[3,4) works; note we include the left
endpoint but not the right endpoint.

Why? Let's taker to be a positive real number. Then

6

1

Prob(die is at most ) = Z 6
n=1

n<x

This means that for any € [3,4), the probability of being at most is just the
probability of being either a 1, 2 or 3; this is juist6 + 1/6 4+ 1/6 or 1/2.

There are a lot of important things to learn from the abovergla. The first is
that the median isn’t always unique; there could be a rangaloes. Second, the
medians don't have to generate an open interval or a clogedsal; our example
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Cumulative Distribution Function for a Fair C
1.0-

0.8~

0.6

0.2+

-4 -2 0 2 4 6 8 10

Figure 1.1: Plot of the cumulative distribution functionE) for a fair die. Note
the CDF is zero for: < 1, is a nice step function for < z < 7, and is identically 1
forxz > 7.

above is an open interval.

Let’s look at a more complicated example. We'll assume tHg passible out-
comes are 1, 2, 3, 4, 5 and 6, and tRabb(X = n) = n/21. This is clearly a
probability density, as the values are all non-negativesurd to 1. We may in-
terpret this by viewing this as a study of a weighted die. W fiie cumulative
distribution function in Figurg112.

We see

1 2 3 4 10
PI’Ob(X < 5) = ﬁ + ﬁ + ﬁ + ﬁ = ﬁ ~ 0.47619.
Thus no value less than 5 can be the median, as the probatfibgingstrictly less

than 5 is less than 50%. Similarly, we see

6
Prob(X >5) = - ~ 0.285714.

Thus no value 5 or larger can be the median! Only one podyitslieft, namely that
5 is the median, and the median is unique in this problem.itncthse, we have

15 11
Prob(X <5) = ST 0.714286 and Prob(X >5) = ST 0.52381.

Notice how different the answer is in the second exampleeditst. With the
weighted die, there is a unique median. The lesson to be gdielaom all of this is
that, unfortunately, what the median is can depend wildlyhendistribution. Some-
times there is a unique median; sometimes there is an int&frm@edians.

For the continuous distributions that we meet in a typicabgability course, the
situation is fortunately much nicer. In fact, as long as tleedity never vanishes
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Cumulative Distribution Function for a Weighted [
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Figure 1.2: Plot of the cumulative distribution functiond€) for a weighted die,
where the probability of rolling an is n/21. Note the CDF is zero far < 1, is a
nice step function fot < x < 7, and is identically 1 for: > 7.

except on an interval of the forf-oo, a), (—o0,al, [b,00) or (b, c0), there is a
unigue median! Unlike the discrete case, for continuoussities the cumulative
distribution function is continuous. This means there argimps, and it's the jumps
that caused all the headaches above!

Let's take one of the standard favorites, the exponentsitidution with density

fla) = {e‘"’: if x>0

0 otherwise.

The cumulative distribution is easily calculated; it's

Flo) /jc F0dt {(1)_6_1 if 2 <0

if z > 0.

The median is the valug such thatF'(iz) = 1/2. For this density, that means

~ 1
l—e® = .

‘ 2

which after some algebra is seen tobe- log 2.

We end with one last example to show that things be annoyingdotinuous
random variables as well. Consider the density depictedgure[1.3, with cumula-
tive distribution function given in Figufe1.4. Note thaetk is no uniqgue median;
any number if—1, 1] is a median. This degeneracy is due to the fact that there is

no probability of taking on a value if-1, 1], and thus the cumulative distribution
function is flat from—1to 1.
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Density of a continuous random varia
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Figure 1.3: Plot of the density functiof(z) =
0 otherwise.

L Ljz[ —2[for1 < |z| < 3and

Imulative distribution function of the continuous random v
1.0

-4 -2 2 4

Figure 1.4: Plot of the cumulative distribution function tbe densityf(z) =

1
4
1 |lz| = 2| for 1 < |z| < 3 and 0 otherwise.
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To sum up, even though we would like to think of the median asplint where
half the probability falls before and half falls after, thdefinition isn’t quite right.
For most distributions, either there is no unique mediarthere is a median but the
probabilities are not 50%.

We end with a very important observation:

Let X be a random variable with densitythat is symmetric about its mean this
mean(u — t) = p(u + t). Then the mediafy equals the meap.

The utility of this point of view will become more and more apent as we pro-
ceed through the chapter. For distributions that are symeradtout the mean, if we
can estimate the median then we get for free an estimate aficla@!

As always, whenever we're looking for an example of a proligtdensity that
has a mean but no variance, we should immediately think ofucigadistribution
(or a cousin). For example, consider the density

1 1

@) = 7l (z—p)?

It is debateable as to whether or not this distribution hagamm If it were to have
one, it would clearly be:.. Why might it not have a mean? The problem is what does

/OO of(z)dz

—0o0
mean? Everything is fine if we interpret the integral as

A
lim xf (z)dx,
A—o0 —A
as in this case it's a finite integral of an odd function, anasthero; if however we

interpret it as
B

Mm@
then the answer depends on havwand B tend to infinity. For example, iB = 24
then the integral is
2A T
lim — —dx.
Asso 4w+ (@ —w)?)
For « large, the integrand is essentiallymz, and thus the integral diverges. Thus,
annoying as it is to say it, the Cauchy distribution mightenen have a mean; how-
ever, it does have a median, and the median is readily searytothus the median
can serve as a surrogate to the mean.

If the previous example felt a bit unsatisfying as the meain'tieven exist,
consider instead
3V3 1
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It turns outg is a probability density. While it's clearly non-zero, it®ot at all
apparent that it integrates to 1. The easiest way to seesttodlise Cauchy’s residue
theorem from Complex Analysis, but this is heavy machinBoytunately, it's clear

that if we consider
C

h = -
@) = TP

then there is some choice 6fsuch that this integrates to 1, namely

(o' 1 —1
©= (/_w1+|x—u|3d$> |

There is some constant that works; the actual value is inmmhteNow the mean
clearly exists, as its defining integral is

/°° 3V3 T

—736156;
—0o0 4 1 + |£C - M|
the integrand decays like/z? and thus there are no convergence issues. Unfortu-
nately this distribution has infinite variance, which metinesCentral Limit Theorem
won't be available to estimate its mean. We'll see below, évev, that wecan esti-
mate the median, and as the median and the mean are equal wsecthe median
estimate for the mean.

1.2 Order Statistics

Key points for this section:

1. The definition of order statistics.

2. Finding the densities of order statistics.

Suppose that the random variablés, X, ..., X, constitute a sample of size
from an infinite population with continuous density. Oftés useful to reorder these
random variables from smallest to largest. In reorderimguriables, we rename
them so that; is a random variable whose value is the smallest of¥heYs is the
next smallest, and so on, wihi, the largest of theX;. Y, is called ther" order
statistic of the sample.

We write this more explicitly as

Y1 = min(Xy,...,X,), ..., ¥ = max(Xq,..., X,).
If we had
X1 =5, X0 =23, X3 =1, X4y = 44, X5 = 6,

then
Y =1,Y, =5,Y3 =6,Y, =23, Y5 = 44.
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There are many reasons we might want to know all we can abesethrder
statistics. For three of these the applications are faiblyiaus, namely foly; (the
smallest value)Y,, (the largest value), and the median.nlfis odd the median is
justY}, /241, while if n is even the median is any value(ir, /2, Y, /241]. We'll give
just one real world reason. Imagine we're building an elewvat a bridge, and our
random variables are the weight on the bridge at variousstiduging the day. We
should be very concerned with how much weight it can bears Waiuld thus be a
situation where we care about the distribution of the maximu

OK. You're hopefully now somewhat convinced that we careuatioese order
statistics. How do we find them? It turns out that we can dexivexpression for the
probability density of the'" order statistic.

Theorem 1.2.1 For a random sample of size from an infinite population having
valuesr and continuous densitf( ), the probability density of the order statistic
Y, is given by

gr(yr) = #('n_r), [/_io (@) dxrl o) U;O (@) dxr_r.

The theorem holds under weaker conditions than stated alean replace
continuity with many things, such as the density being badndVe'll phrase it as
we have above as this is general enough to cover many casesiafst, and leads to
slightly easier proofs.

As always, our first thought after encountering such a lorhiavolved formula
is to explore some special cases. The simplest is to imagiaignt = 1. If this
happens, then there is only one possible order statisticelya: = 1, and the density
collapses tg(y1). This follows from some algebra, using= 1 and anything raised
to the zeroth power is 1.

We should look for some other simple tests, as the one abelsliike cheating;
we're not really looking at order statisticsrifis just 1! Thus, let’s considet > 2
and compare the densities Bf andY,,. There are a lot of commonalities between
the two. In each case the ratio of factorials equalboth have a lone evaluation of
f, and both have just one of the integrals raised to a non-zesep To highlight
the commonalities and differences, we use the same dummablafor each, and

find
ol / " foe)

ws ([ f(z)da?>n1 .

Let’s look at this and try and get a feel for what it's saying sltuations like this, it's

a good idea to go for the extremes; imagiris near infinity near negative infinity. If

y is very large, therfy00 f(x)dx is very small, Whilefj’00 f(x)dx is very close to 1.
Thus, fory large, f1(y) is much smaller thatf,,(y). If instead we looked aj near
negative infinity, we would find (y) is much larger thatf,, (y). This makes perfect
sense! Clearly; <Y, as the smallest value cannot exceed the largest! Thus we
expect more of the mass ®f to occur for ‘small’y thanY,,, and similarly for large

y we expecty;, to have more mass.

fi1(y)

Tn(y)
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It's good advice to always try quick arguments like this wéegr you see a the-
orem. Test it. Look at special cases. This is a great way ta de¢l for what it's
saying. Only after playing with the formula should you tuorthe proof. Speaking
of the proof, it's sadly a little long and technical in placdss fine to just skim it
(or even skip it). We chose to include the proof as it hightsggnlot of the powerful
methods used to prove probability results in the field.

Proof of Theorerh 1.2 1:et h be a positive real number. We divide the real line into
three intervals(—oo, y.), [yr, y» + h], and(y, + h, co0). You should think of: as a
verysmall quantity which tends to zero.

The main idea of our proof is the following: let's compute fr@bability that
r — 1 values lie in the first interval, one lies in the middle and- r lie in the last.
We would like to say that is just

Yr+h
Prob(Y; € [y, yr + h]) = / 9r(yr)dyr;

Yr

unfortunately, we can’'t. The problem is that we could have tw three or even
more of the random variables jp,, v + h|; if for example exactly two were in the
middle interval then our calculation above would be sligluff. This isn’t too big
of an issue, though. We’'ll see that it's very unlikely to haw® or more values in
this interval, as it's of sizé with h — 0. A careful analysis will show that we don’t
have to worry about this case in the limit. We'll then use thea Value Theorem
to conclude that the integral is essentiajly(y.-)h plus something very very small,
and from this we’ll get the claimed density.

Now, to the details! We first find the probability thi} falls in the middle of
these three intervals, amb other value from the sample falls in this intervah
order for this to be the case, we must have 1 values falling in the first interval,
one value falling in the second, amd— r falling in the last interval. We need a
basic fact about multinomial distributions (sA®D REF??). You should review
that section if the argument here seems incomplete. Wehaadues, X, ..., X,,.
We need to choose exactty- 1 to lie in the first intervall in the middle, andw — r
in the last. There ar@rﬁl) ways to choose the— 1 values to lie in the first interval.
Of the remaining: — (r — 1) values, we have to choose 1 to lie in the middle; there
are (”_(I_l)) ways to do this. Finally, we hawe— r remaining values, all of which
lie in the last interval; there is juséﬁ::) ways to do that. Combining all these pieces,
we have the combinatorial piece of the density: the numberayk to have exactly
r — 1 in the first interval, 1 in the middle and— » in the last is just

(T ﬁ 1) (n _ (I _ 1)) (Z - :) T - 1)!(nni r—1) (”1!—(7§T_—T;!))!

n!

n
1,n—r

this is also the multinomial coefficiev(n;_1
for our proof).

) (though we don’t really need this
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We've made good progress. We've shown that

Prob(Y, € [y, y, + h| and Y; # [y, yr + h]if i £ 1) =

yrth Lo oo n—r
e @] [/ f"””"’“] TARCL

(1.1)

We need also consider the case of two or more ofYthlying in [y., y- + h].
This is the most technical part of the argument. We'll briefgscribe the answer
now, and save the full details for later. The idea is thatphidbability must be small.
What do we mean by small? We mean it must be of otdeor smaller, which we
write asO(h?). This means there is some universal cons@such that, for all
sufficiently small, the probability is at mo6th2. The probability any one value lies
in this interval |SJustf”’ f(x)dz, and this integral is of sizk; thus ‘roughly’ the
probability of at least two being in this interval should he square of this. Again,
this is merely a sketch; we’ll give the full details for thosho wish them at the end.
Let’s just accept this for now and move on with the rest of thaop

The consequence of the arguments above is that we may reimeenstraint
that exactly one¥; € [y, + h] in (L) at a cost of at mosP(h?). For our
purposes, it doesn’t matter if there’s exactly one or irdtseveral values in this
interval; as long as there is at least one thetis in this interval. We thus find that

Prob(Y, € [y,,yr + h]) =

i [ e] [ ] [ o]

+ O(h?).

We now apply the Mean Value Theorem.Hfis an anti-derivative of , then the
Mean Value Theorem applied # can be written either as

F(b) — F(a)

b—a = Fle)

or
b
/ f@)dz = (b—a)- f(0)

. We find that for somey, ,,, with y, < ¢y, . < yr + h, we have
yr+h
/ flx)de = h- f(chy,)- (1.2)
Yr

We denote the point provided by the Mean Value Theorem,y in order to em-
phasize its dependence brandy,..
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We can substitute this result into the expression in (1.2).diVide the result by
h (the length of the middle intervay,., y, + h]), and consider the limit as — 0:

Prob(Y; € [yr, yr + b))
im
h—0 h

et [ @] [ @] [ ]
%0 h
i S
li Ws("#)‘ |:f11:>o f(:c) dx} h- f(ch,yr) [fyio.m f(ZC) d:v} "
- a5 h

n!

= Iy L) dw} Flense) [/i sy o]

n'

- e | 1@ d:cylﬂyr) { OO foa] A

Thus the proof is reduced to showing that the left hand side@isg, (y..). Let
g-(y-) be the probability density of,.. Let G..(y,) be the cumulative distribution
function ofY,.. Then

PI‘Ob(Y;‘ Sy) = /y gr(yT)dyr = Gr(y)a

andG..(y) = g,(y). Thus the left hand side df (1.3) equals

i PXob( € [yryr +H)
h—0 h h—0

Gr(yr T hf)b — Gr(yr) = gr(yr)a

where the last equality follows from the definition of the idative. This completes
the proof. O

The technique employed in this proof is a common method flwutaing prob-
ability densities. We first calculate the probability thaadom variablé” lies in
an infinitesimal intervaly, y + h|. This probability isG(y + h) — G(y), whereg
is the density off” andG is the cumulative distribution function (s& = g). The
definition of the derivative yields

. Prob(Y ely,y+h]) . Gly+h)—G(y)
. P e

As promised, we now turn to showing that there is negligilmhall probability
of two or more values of th&(;’s lying in the intervally,., y, + h]. This part may
be safely skipped, as it’s the technical justification foe afi the steps in the proof.
Using the law of total probability, this is just 1 minus th@pability that either none
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of the X;’s lie in this interval or exactly one does. Thus this proligbis

- ( [ f@dx)
n—1
) L) (L) 0

To evaluate the above, we use

Yr+h

/ f(x)dz = 1—/ f(z)dx.
&[yr,yr+h] T=y,

It is here that we finally start using our assumptions. As g/@ssuming’ is con-
tinuous, a result from analysis gives that it's bounded eniterval[y,., y, + 1] by
some number, sa. The integral is therefore at moBt; let's letZ(h) denote the

value of this integral:
Yrt+h

I(h) = / f(x)dz.

=Yr
Substituting into[(14) gives that the probability of twornore of theX;’s being in
the interval is

L— (1= Z(h))" = nZ(h) (1 = Z(h))"""

e (o) e - (-

n—1

= 1-1+4+nZ(h)— (2>I(h)2 +---—nZ(h) —i—n( ) )I(h)2 +---
=  ByZ(h)> + BsZ(h)® +---+ B,Z(h)".

Notice that the constant term canceled, i) term canceled, and all that remains
is terms withZ (%) to the second or higher power. We’'ll spare you the rest of the
details, but clearly a& — 0 the sum is dominated by thHg(h)? piece, and thus
there is some constai (which of course can depend anr, andy,.) such that the
probability of two or more of theX;’s lying in [y,, v, + k] is O(h?) ash tends to
zero.

1.3 Examples of Order Statistics

After developing the general theory, it's fun to apply it tmse special cases. Let's
calculate the distribution of the largest and smallesteslafn independent mea-
surements from the uniform distribution ¢ 1]. So X4, ..., X,, are independent,
identically distributed uniform random variables [n1]. Their densityf satisfies

fa) = {1 fo<e<i

0 otherwise.

From Theoreri 1.211, we find

g1(y1) = nf(y1)< f(w)d£v>n_1-

Y1
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Clearlyg:(y1) = 0 unles9) < y; < 1; if that happens, then

n—1,

)71—1 = n(l - yl) 3

g1(y1) = nf(y)(1 —m
note the smalley; is the larger the density (as one would expect). Fgrwe argue
similarly and find

Yn n—1
) = ot ([ 1@as) = nsn)n -0 =
Not surprisingly,Y;. exhibits the opposite behavior 1§.

As always, there is a simple trick we can do to see if our ans\above are
consistent. Note our random variables are symmetric fanstaboutl /2; in other
words, the density satisfie§1/2 + u) = f(1/2 — u). One consequence of this
is that X; and1 — X; have the same distribution, amgin (X, ..., X,) = max
(1-2X4,...,1—X,). Toputit another way, the probabilityy equalse should be
the same as the probability the}t equalsl — a. In other words, we should have
91(1 — yn) = gn(yn); after doing a little algebra (including a change of varé)l
we see that wdo have this, and happily all is consistent:

gl =yn) = nf(l=yn) (/100 f(fc)d:c) B

—Yn

— nf(m) ( | ra- v)(—dv))n_l

Yn

= st ([ o)

= On (yn)
It's interesting to compute some propertied®f(or, equivalentlyy;,). The most
important, of course, is the mean or expected value. Itis
1
EVv] = / Y191 (y1)dys
0

1
= / y1-n(l—y1)" Hdys.
0

There are many ways to evaluate this integral. Probablydbeest is to integrate by
parts. Letu = yy, du = dyy, dv = n(1 — y;)"‘dy; andv = —(1 — y;)™. Then

1 1
ElYi] = uv‘o—/o vdu
1 1
= yl(l—yl)"o—l-/ (1 —y1)"dyx
0
—(1—y1)‘1
= (0=0)+ —— U
( )+ n+1 lo
1

n+1’
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Is this answer reasonable? The simplest casenisifl, in which casé’; = X;. As
X, is uniform on[0, 1], its average value is 1/2, which is precisely what we get.here
As n increases the mean decreases, which again is reasonafjlésabe minimum
of a larger and larger set, and thus it has a greater and gotetece of being small.
As an aside, it's worth remarking that the expected valug,of 7.

For a nice exercise, see if you can find a nice formula for th@mim and the
maximum of 2, 3 or 4 independent standard exponentialsfiie) = e~ * forz > 0
and0 otherwise). Can you generalize your answer?

1.4 The Sample Distribution of the Median

Okay. We've spent a lot of time and written down a multitudesgplicit equations
for all the order statistics, and we've done some calcutatidt’'s time to get some
dividends! Specifically, it's time to really see why this isch an important topic.

In addition to the smallest{) and largestY;,) order statistics, we're often inter-
ested in thesample median X. For a sample of odd size,= 2m + 1, the sample
median is defined a¥%,,, ;. If n = 2m is even, the sample median is defined as
%(Ym + Ym+1)-

As always, let's assume our random variable has a contindensity. We'll
prove a relation between the sample median andptifulation median g. By
definition, ;i satisfies

g 1
[m fl@)de = 7 (1.5)

It is convenient to re-write the above in terms of the cumwudedistribution func-
tion. If F'is the cumulative distribution function gf thenF’ = f and [1.5) becomes

We are now ready to consider the distribution of the sampldiame This is the
big theorem of the chapter; as discussed, it serves as a gbetitate to the Central
Limit Theorem in many cases.

Theorem 1.4.1 (Sample Median)Let a sample of size = 2m + 1 with n large be
taken from an infinite population with a density functifx) (in other words, we
haven independent, identically distributed random variabletwdensityf) that is
nonzero at the population medignand continuously differentiable in a neighbqr-
hood offi. The sampling distribution of the median is approximatedynmal with

Y i 1
meanj and variancegrryr, -

While this is an extremely important theorem, and one of #edpplications of
order statistics, the proof is long. It's frequently omitia a first course in probabil-
ity; there is no harm in skipping it. Because most books doffér a proof, it can be
frustrating for those who want to understand what's reatling on, as you have to
track down a proof somewhere. So, partly for completenedsamalways, partly to
emphasize the techniques and methods of the proofs, wederayproof below. As
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the argument is long, you should skim it first to take in them@oints, and then if
you desire go back and try to follow it step by step.

For those going forward with the proof, here’s a quick owlaf what you'll see;
the list of topics should show you why we think the proof neefitclusion! We’ll
use Stirling’s formula to estimate the factorials, Tayleries to expand our func-
tions about the median, and the definitiore6fto understand the limiting behavior.
This last step involves some delicate analysis, speciibalhdling how powers con-
verge to exponentials. It's very easy to make a mistake la@e we’ll show a nice
technique to attack problems like this. We'll end by doingisoalgebra to help us
recognize that the limit converges to being normally disiréd.

Proof: Let the median random variabl€ have values: and densityg(z). The
median is simply thém + 1) order statistic, so its distribution is given by Theorem

/ f(@)d ]f@ﬂéwﬂmmrl

We first find an approximation for the constant factor in tlgsi@ion. For this, we
use Stirling’s formula (se&DD REF), which tells us thak! = n"e~"v2mn(1 +
O(n™1)). We'll consider values sufficiently large so that the terrhsrder1/n need
not be considered. Rather then clutter the already longnaegtiwith more careful
book-keeping, we'll argue at this level of informality; tirerested reader can go
through and add the details. Hence

(2m + 1)!

9(@) = —

2m+1)! (2m+1)(2m)!
mlm! B (m!)?
(2m + 1)(2m)?™me=2m /27 (2m)
(mme=™v/2mm)?
(2m 4 1)4™

Jrm

As F is the cumulative distribution functiod (z f f(z) dz, which implies

%

(2m + 1)4™
Jm

It's generally a good idea to replace complicated functiaith simpler ones.
Thus, we'll use the Taylor series expansionFdft) abouti, which is just

9(7) ~ [F@)]™ f(@) [1 - F@)]™.

F(&) = F(i)+ F/(i)(E - i) + O((& - @)?).

Becausg: is the population mediar' (1) = 1/2. Further, sincé” is the cumulative
distribution function /” = f and we find

F@) = 3+ f(@)E - )+ O — i) (16)

This approximation is only useful if — i is small; in other words, we neéin,,,
|Z — fi] = 0. Fortunately this is easy to show, and a proof is includetiaeind of
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this section. So as not to lose the flow of the argument, Istsime this holds for
now and continue.

Lett = Z — i (which is small and tends to 0 as — oc). We want to substitute
our Taylor series expansion info (IL.6). Actually, we neeéxpand even further —
this is sadly an instance where the standard, first ordepTaglies does not provide
enough control! The problem is each term has an error of Gizé). When we
multiply them together there is also an error of si2g?), and this is the same order
of magnitude as the secondary ter(yi(zi)t)?. The remedy is to be more careful in
expanding(z) andl — F(Z). A careful analysis shows that thefrterms are equal
in magnitude but opposite in sign. Thus they will cancel ia talculations below.
In summary, we really need to us&z) = 1 + f(4)(& — i) + #(j — f1)? plus
an error of size)((z — 12)?) (and similarly forl — F'(z)). We find

o) ~ ZEDE L e+ TG - e o)

1@ 1= (3 + s+ L8 -y v o )]

By rearranging and combining factors, we find that

9(z) = Wﬂz)

_ Cm+1)f@) [1 _Am(f(@)t)?
Ne

Remember that one definition ef is

] (2m +1)4™ [1

€T n
e’ = exp(z) = lim (1 + —) ;
n—roo n
seeADD REF ?? for a review of properties of the exponential function. hst
immediately clear that we can use this, as we havie both the numerator and the
denominator; howevet,is supposed to be quite small, and we’ll show later it's so
small thatmt? cannot be that large with respectiia So, for now let's not worry
about justifying this step and just use the exponentiatimiaWhile we're at it, let's
also ignore higher powers offor the moment. We find for large: that

- 2m+1)f(z)

9() =~ TGXP(—‘lmf(ﬂ)QtQ)
L Cme® (G
~ 20 e (i) 8

Since, as shown below,can be assumed arbitrarily closeitavith high probability,
we can assumég(z) ~ f(it). To prove that there is negligible error in replacing
f(&) with f(z), we use the mean value theorem and find

@) = f(p) = fleap) (@ — )

here we have written the constant @s; to emphasize the fact that we evaluate
the first derivative in the intervdlz, i]. As we have assumefl is continuously
differentiable andz — 4| is small, we may bound’(cz ;) Thus we may replace
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f(z) with f(i) at a cost ofO(¢t), wheret = & — f tends to zero withn. We
therefore have

- (2m +1)f(f) ( (z — p)? )
r) N ——2~ ex _ .
0= A )
Looking at the exponential part of the expressiond(i), we see that it appears to
be a normal density with megnando? = 1/(8mf(f1)?). If we were instead to

compute the variance from the normalization constant, waldviind the variance to
be

m
2(2m + 1)2f ()2
We see that the two values are asymptotically equivalens, we can take the vari-
ance to ber? = 1/(8mf(j1)?). Thus to complete the proof of the theorem, all that
we need to is prove that we may ignore the higher powet st replace the product
with an exponential in passing frofn (1..7) kg (1.8). Usingithentity

w™ = exp (log(w™)) = exp(mlogw).
We have

(- (/)1

- + O(t3)) = exp(mlog (1 —4(f(2)t)* + O(t?))).

(1.9)
We use the Taylor series expansion@f(1 — x):
log(l —z) = —x+ O(2?);

we only need one term in the expansiort &ssmall. Thus[(119) becomes

(1 _ Am(f(@)t)? + O(t3))m = exp(—m-4(f(p)t)* + O(mt*))

m

(& — )’

exp | —— o
( 1/(4mf(j)?)
In §1.5 we’'ll show that asn — oo, mt3 — 0. Thus theexp(O(mt?)) term above
tends tol, which completes the proof. O

) . exp(O(mt?)).

Our justification of ignoring the higher powers pfand replacing the product
with an exponential in passing from (11.7) [0 (1.8) is a staddechnique. As it's so
important, we repeat again why we can do this. We are jushoapd some quantity
(1 — P)™ with (1 — P)™ = exp(mlog(1l — P)). We then Taylor expand the loga-
rithm, and look at the limit asm — oo.

ADD REF TO CLT CHAPTER WHERE CAN GO WRONG — PRODUCT
ONE TO INFINITY ONE TO ZERO

1.5 Technical bounds for proof of Median Theorem

In proving the Median Theorem, we assumed that we could ghigher powers of
t = X — i. We are able to do this because, with high probabitifg, small. Here
we provide a more formal statement of this fact, as well aafpr



Section 1.5: Technical bounds for proof of Median Theoren?1

Lemma 1.5.1 Suppose (x) is a continuously differentiable function in some neigh-
borhood ofiz. Then for any: > 0, we have

lim Prob(|X —ji| > ¢) = 0.

m—0

Proof: This is equivalent to proving that

lim Prob(X <ji—¢) = 0 and lim Prob(X >ji+¢) = 0.
m—0 m—0
We will prove only the first of these two statements as the fwbthe second is very
similar.
By (1.9), we can approximate the density of the median as

2 o @m DA f(E)
9(%) Y

We consider the factof{F'(z)] [1 — F(z)])™. Itis convenient to writd) = F(z)
and consider the functioh(f) = 6(1 — #). This function will attain its maximum
for the same value of = F(%) as([F ()] [1 — F(2)])™, and it's a simple exercise
in calculus to show that this valuefs= 1/2. This condition holds only fof = f.
We furthermore note that far < 1/2, #'(9) = 1 — 20 > 0, soh is increasing. Since
F(z) = L precisely whert = i, this means that fat < fi — ¢, the maximum value

2
of ¢(#) occurs forz = i — c. We therefore have fa¥ < i — ¢,

(F@)] [ = F@))™.

(F@) - PE)" < (FGi-o[l - F(i-o)"
< (F@D-F@)" =15 (L10)

We chooser so that§ = F(i — ¢) (1 — F(in — ¢)). Equation[(1.10) then tells us
thatforz < i — ¢,

F@L-F@E)" < (9" < o

In particular, we note that < 1.
We now begin to look at the probability that is at mosti — ¢. We have

Prob(X <ji—c¢) = /M_cg(i) dz

— 00

- = (2m + 1)4™ AF(H™ (1 — F(IN™ da
~ /_OO B H®F @ (- F@)"d

(2m)4m  [FA=e
vm o

In the last step, we use the fact that farsufficiently large (n > 1, in fact),2m <
Qm—\/%rl. This simplifies the expression as a factoref is easier to work with than

f@F@E)™1 - F@)™ dz.
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the factor of2m + 1. We now apply our bound oR'(z)(1 — F (%)) to find that

Pob(¥ <p-o) < TR iocf(i) (2)" a
_ (Q%W (%)m/_l:cf(ﬁc)dgz

< 2amm/i f(Z) di.

In obtaining the rightmost expression, we have used theffatf () is nonneg-
ative everywhere and positive in a neighborhoodipfso thatff;oC f@dz <

ff‘oo f(@)dz. Sincef is the median of the population, by definition, we have
ff‘oo f(%)dz = 3, so that

Prob(X <ji—¢) < o™/m.

Sincea < 1, it follows that the right side of this inequality must conge to0 asm
goes to infinity, so the probability on the right side muselikse converge t6. 0O

Problem 1.5.2 Leta € (0,1). Prove

lim a™vm = 0.

m—r oo

In fact, this expression tends to zero exponentially fastdl= 1 — «. Show that for
m sufficiently large,

amym < A (1 - g) = Ae Bm,
whereA and B are constants (witlB = log (1 — $).

1.6 The Median of Normal Random Variables

Consider the case of a normal population with mgamnd variance2. The normal
density is symmetric about the meanhenceii = p. Furthermore, we have

fw) = f(w
S D N TS O
2mo? P 202
_ 1
V2ro2’
which implies that
1 wo?
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For largen = 2m + 1, we therefore see that the distribution of the median (from
a normal distribution with meap and variancer?) will be approximately normal
with meany and variancero? /4m.

What can we say about the population mean? Either from theér&drimit
Theorem, or calculating directly as the sum of normal randariables is normal, we
see that the sample mean is normally distributed with meand variancer? /n =
a?/(2m+1).

So, both the sample median and the sample mean convergentp rto@imally
distributed with mean:; however, the sample median has variance approximately
no? /4m, while the mean has varianed/(2m + 1). If we take the ratio of the two,
we find

Variance of Sample Median no?/4m m2m+1

Variance of Sample Mean ~ 02/(2m+1) 2 2m

For largem, this ratio is aboutr/2 ~ 1.57. What does this mean? It means that
while the sample median and sample mean have the same ekpeltte, the sample
median has larger fluctuations. How should we interpreftiibe cleanest is that
the sample mean will do a better job; it’s ‘tighter’ about thee value.

The moral of this example is that, as nice as the Median Thedsgit's most
emphaticallynot a replacement for the Central Limit Theorem whenever thermea
and the median are equal. The Central Limit Theorem can gitiebresults; the
Median Theorem should be kept in reserve for situations a/iige Central Limit
Theorem isn’t applicable (for instance, when we have aidigion like the Cauchy
which has infinite variance, and possibly even undefined thean
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