
RESEARCH PROJECTS

STEVEN J. MILLER

ABSTRACT. Here is a collection of research projects, ranging from number theory
to probability to statistics to random graphs.... Much of the background material is
summarized from [MT-B], though most standard number theory textbooks would have
these facts. Each chapter begins with a brief synopsis of the types of problems and
background material needed. For more information, see the handouts on-line at
http://www.williams.edu/go/math/sjmiller/public html/projects
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1. IRRATIONALITY QUESTIONS

The interplay between rational and irrational numbers leads to a lot of fun questions
with surprising applications. Frequently the behavior of some system of mathematical
or physical interest is wildly different if certain parameters are rational or not. We
have ways to measure how irrational a number is (in a natural sense, the golden mean
(1 +

√
5)/2 is the most irrational of all irrational numbers), and numbers that are just

‘barely’ irrational are hard to distinguish on a computer, which since it works only with
0s and 1s obviously can only deal with rational numbers.

We’ll describe a variety of projects.
1
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(1) Irrationality of
√

n: Absolutely no background math needed, this project is con-
cerned with the search for elementary and elegant proofs of irrationality.

(2) Irrationality of π2 and the infinitude of primes: Multivariable calculus, elemen-
tary group theory, some combinatorics and some elementary analysis.

(3) Transcendental numbers: Pidgeon-hole principle, some abstract algebra (mini-
mal polynomials), factorial function and analysis.

(4) Continued fractions: Lots of numerical investigations here requiring just simple
programming (Mathematica has a lot of built in functions for these). Many of
the projects require half of a course on continued fractions (I can make notes
available if needed). Some of the numerical investigations require basic proba-
bility and statistics.

1.1. Irrationality of
√

n. If n is not a square, obviously
√

n is irrational. The most
famous proof is in the special case of n = 2. Assume not, so

√
n = m/n for at least

one pair of relatively prime m and n. Let p and q be such that
√

2 = p/q and there is
no pair with a smaller numerator. (It’s a nice exercise to show such a pair exists. One
solution is to use a descent argument, which you might have seen in cases of Fermat’s
last theorem or elliptic curves.) Then

√
2 =

p

q

2q2 = p2. (1.1)

We can now conclude that 2|p. If we know unique factorization, the proof is immediate.
If not, assume p = 2m + 1 is odd. Then p2 = 4m2 + 4m + 1 is odd as well, and hence
not divisible by two. (Note: I believe I’ve heard that the Greeks argued along these
lines, which is why their proofs stopped at something like the irrationality of

√
17, as

they were looking at special cases; it would be interesting to look up how they attacked
these problems.) We therefore may write p = 2r with 0 < r < p. Then

2q2 = p2 = 4r2, (1.2)

which when we divide by 2 gives

q2 = 2r2. (1.3)

Arguing as before, we find that 2|q, so we may write q = 2s. We have thus shown that
√

2 =
p

q
=

2r

2s
=

r

s
, (1.4)

with 0 < r < p. This contradicts the minimality of p, and therefore
√

2 is irrational.
On 2/9/09, Margaret Tucker gave a nice colloquium talk at Williams about proofs of

the irrationality of
√

2. Among the various proofs is an ingenuous one due to Conway.
Assume

√
2 is rational. Then there are integers m and n such that 2m2 = n2. We

quickly sketch the proof. As in the first proof, let m and n be the smallest such integers
where this holds (this implies we have removed all common factors of m and n). Then
two squares of side m have the same area as a square of side n. This leads to the
following picture (Figure 1):

We have placed the two squares of side length m inside the big square of side length
n; they overlap in the red region and miss the two blue regions. Thus, as the red region is
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FIGURE 1. Conway’s proof of the irrationality of
√

2

FIGURE 2. Miller’s proof of the irrationality of
√

3, with no attempt
made at drawing to scale!

double counted and the area of the two squares of side m equals that of side n, we have
the area of the red region equals that of the two blue regions. This leads to 2x2 = y2

for integers x and y, with x < m and y < n, contradicting the minimality of m and
n. (One could easily convert this to an infinite descent argument, generating an infinite
sequence of rationals.).

Professor Morgan commented on the beauty of the proof, but remarked that it is spe-
cial to proving the irrationality of

√
2. The method can be generalized to handle at least

one other number:
√

3. To see this, note that any equilateral triangle has area propor-
tional to its side length s (and of course this constant is independent of s). Assume

√
3

is rational, and thus we may write 3x2 = y2. Geometrically we may interpret this as the
sum of three equilateral triangles of integral side length x equals an equilateral triangle
of integral side length y. Clearly x < y, and this leads to the following picture (Figure
2):

Above we have placed the three equilateral triangles of side length x in the three
corners of the equilateral triangle of side length y. Clearly x > y/2 so there are inter-
sections of these three triangles (if x ≤ y/2 then 3x2 ≤ 3y2/4 < y2). Let us color the
three equilateral triangles formed where exactly two triangles intersect by blue and the
equilateral triangle missed by all by red. (There must be some region missed by all, or
the resulting area of the three triangles of side length x would exceed that of side length
y.) Thus (picture not to scale!) the sum of the three blue triangles equals that of the
red triangle. The side length of each blue triangle is 2x− y and that of the red triangle
x− 2(2x − y) = y − 3x, both integers. Thus we have found a smaller pair of integers
(say a and b) satisfying 3a2 = b2, contradiction.

This leads to the following:
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Project 1.1. For what other integers k can we find some geometric construction along
these lines proving

√
k is irrational? Or, more generally, for what positive integers k

and r is r
√

k irrational?

Remark 1.2. I have not read Conway’s paper, so I do not know what he was able to
show.

1.2. Irrationality of π2 and the infinitude of primes. Let π(x) count the number of
primes at most x. The celebrated Prime Number Theorem states that π(x) ∼ x/ log x
for x large (even better, π(x) ∼ Li(x), where Li(x) =

∫ x

2
dt/ log t, which to first order

is x/ log x). As primes are the building blocks of integers, it is obviously important to
know how many we have up to a given height.

There are numerous proofs of the infinitude of primes. Many of the proofs of the
infinitude of primes fall naturally into one of two categories. First, there are those
proofs which provide a lower bound for π(x). A classic example of this is Chebyshev’s
proof that there is a constant c such that cx/ log x ≤ π(x) (many number theory books
have this proof; see for example [MT-B]). Another method of proof is to deduce a
contradiction from assuming there are only finitely many primes. One of the nicest
such arguments is due to Furstenberg (see [AZ]), who gives a topological proof of the
infinitude of primes. As is often the case with arguments along these lines, we obtain
no information about how rapidly π(x) grows.

Sometimes proofs which at first appear to belong to one category in fact belong to
another. For example, Euclid proved there are infinitely many primes by noting the
following: if not, and if p1, . . . , pN is a complete enumeration, then either p1 · · · pN + 1
is prime or else it is divisible by a prime not in our list. A little thought shows this
proof belongs to the first class, as it yields there are at least k primes at most 22k , that
π(x) ≥ log log(x).

For the other direction, we examine a standard ‘special value’ proof; see [MT-B] for
proofs of all the claims below. Consider the Riemann zeta function

ζ(s) :=
∞∑

n=1

1

ns
=

∏
p prime

(
1− p−s

)−1
,

which converges for Res > 1; the product representation follows from the unique
factorization properties of the integers. One can show ζ(2) = π2/6. As π2 is irrational,
there must be infinitely many primes; if not, the product over primes at s = 2 would be
rational. While at first this argument may appear to belong to the second class (proving
π(x) tends to infinity without an estimate of its growth), it turns out that this proof
belongs to the first class, and we can obtain an explicit, though very weak, lower bound
for π(x). Unfortunately, the argument is a bit circular, for the following reason.

Our lower bounds for π(x) use the fact that the irrationality measure of π2/6 is
bounded. An upper bound on the irrationality measure of an irrational α is a number ν
such that there are only finitely many pairs p and q with

∣∣∣∣α−
p

q

∣∣∣∣ <
1

qν
.
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The irrationality measure µirr(α) is defined to be the infimum of the bounds and need
not itself be a bound. Liouville constructed transcendental numbers by studying num-
bers with infinite irrationality measure, and Roth proved the irrationality measure of an
algebraic number is 2 (see [MT-B]). Currently the best known bound is due to Rhin
and Viola [RV2], who give 5.45 as a bound on the irrationality measure of π2/6. Un-
fortunately, the published proofs of these bounds use good upper and lower bounds for
dn = lcm(1, . . . , n). These upper and lower bounds are obtained by appealing to the
Prime Number Theorem (or Chebyshev type bounds); this is a problem for us, as we
are trying to prove a weaker version of the Prime Number Theorem (which we are thus
subtly assuming in one of our steps!).

This leads to the following:

Project 1.3. Can we prove that the irrationality measure of π2/6 is finite without ap-
pealing to the Prime Number Theorem, Chebyshev’s Theorem, or anything along these
lines?

Even if we cannot do this, all hope is not lost in attempting to get a good lower bound
on π(x) by studying π2/6. We can open up the proof of Rhin and Viola [RV2] and see
what happens if, infinitely often, π(x) is small. I have some notes to this affect on the
webpage (there are some typos there). I think it will be possible to show the following:
We say f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0. Let f(x) be any function satisfying
f(x) = o(x/ log x). I believe one can show that infinitely often π(x) > Cf(x) for
some C. Thus

Project 1.4. Open up the proof of Rhin and Viola. See where the Prime Number Theo-
rem / Chebyshev’s theorem is used to estimate the least common multiple of {1, . . . , n}.
Avoid using these results, and instead assume that π(x) ≤ f(x) for all x sufficiently
large. Deduce a contradiction. It is essential that their argument can be split into two
parts, one part needed the least common multiple and one part independent.

(Note: if interested, I have a copy of Rhin and Viola’s paper.)

1.3. Transcendental numbers. While it is easy to construct irrational numbers, it is
much harder to prove that a given irrational number is transcendental (even though, in a
certain sense, almost every irrational number is transcendental!). Recall the following
definitions:

Definition 1.5 (Algebraic Number). An α ∈ C is an algebraic number if it is a root of
a polynomial with finite degree and integer coefficients.

Definition 1.6 (Transcendental Number). An α ∈ C is a transcendental number if it is
not algebraic.

It has been known for a long time that numbers such as e and π are transcendental,
though it is an open question as to whether or not e + π or eπ is transcendental (we can
show at least one is, and we expect both are). Certain numbers are readily shown to
be transcendental. These special numbers are called Liouville numbers. We’ll describe
their form below, and why they are transcendental.

We need a definition first; though this was defined in a previous subsection, to make
this part self-contained we repeat the preliminaries. Let α be a real number. We desire
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a rational number p
q

such that
∣∣∣α− p

q

∣∣∣ is small. Some explanation is needed. In some
sense, the size of the denominator q measures the “cost” of approximating α, and we
want an error that is small relative to q. For example, we could approximate π by
314159/100000, which is accurate to 5 decimal places (about the size of q), or we
could use 103993/33102, which uses a smaller denominator and is accurate to 9 decimal
places (about twice the size of q)!

Definition 1.7 (Approximation Exponent). The real number ξ has approximation order
(or exponent) τ(ξ) if τ(ξ) is the smallest number such that for all e > τ(ξ) the inequality∣∣∣∣ξ −

p

q

∣∣∣∣ <
1

qe
(1.5)

has only finitely many solutions.

Good exercises are to show that rationals have approximation exponent of 1 and
irrationals have irrationality exponent at least 2 (the standard proof uses Dirichlet’s
pidgeon-hole principle). Another good exercise is

Exercise 1.8 (Approximation Exponent). Show ξ has approximation exponent τ(ξ) if
and only if for any fixed C > 0 and e > τ(ξ) the inequality∣∣∣∣ξ −

p

q

∣∣∣∣ <
C

qe
(1.6)

has only finitely many solutions with p, q relatively prime.

Theorem 1.9 (Liouville’s Theorem). Let α be a real algebraic number of degree d.
Then α is approximated by rationals to order at most d.

Proof. Let
f(x) = adx

d + · · ·+ a1x + a0 (1.7)
be the polynomial with relatively prime integer coefficients of smallest degree (called
the minimal polynomial such that f(α) = 0. The condition of minimality implies that
f(x) is irreducible over Z. (It is a good exercise to prove this.)

In particular, as f(x) is irreducible over Q, f(x) does not have any rational roots.
If it did then f(x) would be divisible by a linear polynomial (x − a

b
). Therefore f is

non-zero at every rational. Our plan is to show the existence of a rational number p
q

such that f(p
q
) = 0. Let p

q
be such a candidate. Substituting gives

f

(
p

q

)
=

N

qd
, N ∈ Z. (1.8)

Note the integer N depends on p, q and the ai’s. To emphasize this dependence we
write N(p, q; α). As usual, the proof proceeds by showing |N(p, q; α)| < 1, which then
forces N(p, q; α) to be zero; this contradicts f is irreducible over Q.

We find an upper bound for N(p, q; α) by considering the Taylor expansion of f
about x = α. As f(α) = 0, there is no constant term in the Taylor expansion. We may
assume p

q
satisfies |α− p

q
| < 1. Then

f(x) =
d∑

i=1

1

i!

dif

dxi (α) · (x− α)i. (1.9)
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Consequently
∣∣∣∣f

(
p

q

)∣∣∣∣ =

∣∣∣∣
N(p, q; α)

qd

∣∣∣∣ ≤
∣∣∣∣
p

q
− α

∣∣∣∣ ·
d∑

i=1

∣∣∣∣
1

i!

dif

dxi (α)

∣∣∣∣ ·
∣∣∣∣
p

q
− α

∣∣∣∣
i−1

≤
∣∣∣∣
p

q
− α

∣∣∣∣ · d ·max
i

∣∣∣∣
1

i!

dif

dxi (α) · 1i−1

∣∣∣∣

≤
∣∣∣∣
p

q
− α

∣∣∣∣ · A(α), (1.10)

where A(α) = d ·maxi

∣∣∣ 1
i!

dif
dxi (α)

∣∣∣. If α were approximated by rationals to order greater
than d, then (Exercise 1.8) for some ε > 0 there would exist a constant B(α) and
infinitely many p

q
such that ∣∣∣∣

p

q
− α

∣∣∣∣ ≤
B(α)

qd+ε
. (1.11)

Combining yields ∣∣∣∣f
(

p

q

)∣∣∣∣ ≤
A(α)B(α)

qd+ε
. (1.12)

Therefore

|N(p, q; α)| ≤ A(α)B(α)

qε
. (1.13)

For q sufficiently large, A(α)B(α) < qε. As we may take q arbitrarily large, for suffi-
ciently large q we have |N(p, q; α)| < 1. As the only non-negative integer less than 1 is
0, we find for q large that f

(
p
q

)
= 0, contradicting f is irreducible over Q. ¤

We may use the above to construct transcendental numbers; see [MT-B] (among
numerous other sources!) for a proof.

Theorem 1.10 (Liouville). The number

α =
∞∑

m=1

1

10m!
(1.14)

is transcendental.

This gives us one transcendental number. Can we get more?

Project 1.11. Consider the binary expansion for x ∈ [0, 1), namely

x =
∞∑

n=1

bn(x)

2n
, bn(x) ∈ {0, 1}. (1.15)

For irrational x this expansion is unique. Consider the function

M(x) =
∞∑

n=0

10−(bn(x)+1)n!. (1.16)

Prove for irrational x that M(x) is transcendental. Thus the above is an explicit con-
struction for uncountably many transcendentals! Investigate the properties of this func-
tion. Is it continuous or differentiable (everywhere or at some points)? What is the
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measure of these numbers? These are “special” transcendental numbers; do they have
any interesting properties?

1.4. Continued Fractions.

1.4.1. Introduction. For many problems (such as approximations by rationals and al-
gebraicity), the continued fraction expansion of a number provides information that is
hidden in the binary or decimal expansion. There are many applications of this knowl-
edge, ranging from digit bias in data to the behavior of the fractional parts of nkα (which
arises in certain physical systems).

There are many ways to represent numbers. A common way is to use decimal or base
10 expansions. For a positive real number x,

x = xn10n + xn−110n−1 + · · ·+ x1101 + x0 + x−110−1 + x−210−2 + · · ·
xi ∈ {0, 1, . . . , 9}. (1.17)

We can obviously generalize this to an arbitrary base.
Unfortunately the decimal expansion is not ‘natural’; the universe almost surely does

not care that we have 10 fingers on our hand! Thus, we want an expansion that is
base-independent, and hopefully this will highlight key properties of our number.

A Finite Continued Fraction is a number of the form

a0 +
1

a1 +
1

a2 +
1

. . .
+

1

an

, ai ∈ R. (1.18)

As n is finite, the above expression makes sense provided we never divide by 0. Since
this notation is cumbersome to write, we introduce the following shorthand notations.
The first is

a0 +
1

a1+

1

a2+
· · · 1

an

. (1.19)

A more common notation, which we often use, is

[a0, a1, . . . , an]. (1.20)

We state a few standard definitions.

Definition 1.12 (Positive Continued Fraction). A continued fraction [a0, . . . , an] is pos-
itive if each ai > 0 for i ≥ 1.

Definition 1.13 (Digits). If α = [a0, . . . , an] we call the ai the digits of the continued
fraction. Note some books call ai the ith partial quotient of α.

Definition 1.14 (Simple Continued Fraction). A continued fraction is simple if for each
i ≥ 1, ai is a positive integer.

Below we mostly concern ourselves with simple continued fractions; however, in
truncating infinite simple continued fractions we encounter expansions which are sim-
ple except for the last digit.
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Definition 1.15 (Convergents). Let x = [a0, a1, . . . , an]. For m ≤ n, set xm =
[a0, . . . , am]. Then xm can be written as pm

qm
, where pm and qm are polynomials in

a0, a1, . . . , am. The fraction xm = pm

qm
is the mth convergent of x.

There turns out to be a very simple algorithm to compute continued fraction ex-
pansions; in fact, it’s basically just the famous Euclidean algorithm! We want to find
integers ai (all positive except possibly for a0) such that

x = a0 +
1

a1 +
1

a2 + · · ·

. (1.21)

Obviously a0 = [x], the greatest integer at most x. Then

x− [x] =
1

a1 +
1

a2 + · · ·

, (1.22)

and the inverse is

x1 =
1

x− [x]
= a1 +

1

a2 +
1

a3 + · · ·

. (1.23)

Therefore the next digit of the continued fraction expansion is [x1] = a1. Then x2 =
1

x1−[x1]
, and [x2] = a2, and so on.

Project 1.16. Let p/q ∈ (0, 2] be a rational number. Prove it may be written as a sum
of distinct rationals of the form 1/n (for example, 31/30 = 1/2 + 1/3 + 1/5). Hard: is
the claim still true if p/q > 2? (I forget if this is known!)

1.4.2. Quadratic Irrationals. An x ∈ R is rational if and only if x has a finite continued
fraction. This is a little different then decimal expansions, as there are some infinite
decimal expansions that correspond to rational numbers. Things get interesting when
we look at irrational numbers.

First, some notation. By a periodic continued fraction we mean a continued fraction
of the form

[a0, a1, . . . , ak, . . . , ak+m, ak, . . . , ak+m, ak, . . . , ak+m, . . . ]. (1.24)

For example,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 8, 9, 7, 8, 9, 7, 8, 9, . . . ]. (1.25)

The following theorem is one of the most important in the subject; see [MT-B] for a
proof.

Theorem 1.17 (Lagrange). A number x ∈ R has a periodic continued fraction if and
only if it satisfies an irreducible quadratic equation; i.e., there exist A,B, C ∈ Z such
that Ax2 + Bx + C = 0, A 6= 0, and x does not satisfy a linear equation with integer
coefficients.

Project 1.18. Give an explicit upper bound for the constant M that arises in the proof
of the above theorem in [MT-B]; the bound should be a function of the coefficients of
the quadratic polynomial. Use this bound to determine an N such that we can find
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three numbers an1 , an2 , an3 as in the proof with ni ≤ N . Deduce a bound for where the
periodicity must begin. Similarly, deduce a bound for the length of the period. Note: I
am not sure how much is known here, but it is an interesting problem seeing how the
period varies with A,B and C.

We have shown that x is a quadratic irrational if and only if its continued fraction
is periodic from some point onward. Thus, given any repeating block we can find a
quadratic irrational. In some sense this means we completely understand these numbers;
however, depending on how we traverse countable sets we can see greatly different
behavior.

For example, consider the following ordered subsets of N:

S1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . }
S2 = {1, 3, 2, 5, 7, 4, 9, 11, 6, 13, 15, 8, . . . }. (1.26)

For N large, in the first set the even numbers make up about half of the first N numbers,
while in the second set, only one-third. Simply by reordering the terms, we can adjust
certain types of behavior. What this means is that, depending on how we transverse a
set, we can see different limiting behaviors.

Exercise 1.19 (Rearrangement Theorem). Consider a sequence of real numbers an that
is conditionally convergent but not absolutely convergent:

∑∞
n=1 an exists and is finite,

but
∑∞

n=1 |an| = ∞; for example, an = (−1)n

n
. Prove by re-arranging the order of

the an’s one can obtain a new series which converges to any desired real number!
Moreover, one can design a new sequence that oscillated between any two real numbers.

Therefore, when we decide to investigate quadratic irrationals, we need to specify
how the set is ordered. This is similar to our use of height functions to investigate
rational numbers. One interesting set is FN = {√n : n ≤ N}; another is GN = {x :
ax2 + bx + c = 0, |a|, |b|, |c| ≤ N}. We could fix a quadratic irrational x and study its
powers HN = {xn : 0 < |n| ≤ N} or its multiples IN = {nx : 0 < |n| ≤ N} or ratios
JN = {x

n
: 0 < |n| ≤ N}.

Remark 1.20 (Dyadic intervals). In many applications, instead of considering 0 < n ≤
N one investigates N ≤ n ≤ 2N . There are many advantages to such studies. For N
large, all elements are of a comparable magnitude. Additionally, often there are low
number phenomena which do not persist at larger values: by starting the count at 1,
these low values could pollute the conclusions. For example, looking at

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, (1.27)

we conclude 40% of numbers are prime, and 50% of primes p also have p+2 prime (i.e.,
start a twin prime pair); further, these percentages hold if we extend to {1, . . . , 20}!
Both these conclusions are false. The Prime Number Theorem states that the proportion
of numbers less than x that are prime is like 1

log x
, and heuristics (using the Circle

Method) indicate the proportion that are twin primes is 2C2

log2 x
, where C2 ≈ .66016 is the

Hardy-Littlewood twin prime constant. See [So] for further details.

One must be very careful about extrapolations from data. A terrific example is
Skewes’ number. Let π(x) equal the number of primes at most x. A good approxi-
mation to π(x) is Li(x) =

∫ x

2
dt

log t
; note to first order, this integral is x

log x
. By studying
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tables of primes, mathematicians were led to the conjecture that π(x) < Li(x). While
simulations supported this claim, Littlewood proved that which of the two functions is
larger changes infinitely often; his student Skewes [Sk] proved the first change occurs

by x = 10101010
3

. This bound has been significantly improved; however, one expects the
first change to occur around 10250. See [Rie] for investigations of π(x)− Li(x). Num-
bers this large are beyond the realm of experimentation. The moral is: for phenomena
whose natural scale is logarithmic (or log-logarithmic, and so on), numerics can be very
misleading.

Project 1.21. Determine if possible simple closed formulas for the sets HN , IN and
JN arising from φ (the golden mean) and xm,+. In particular, what can one say about
nxk

m,+ or xk
m,+/n? How are the lengths of the periods related to (m, k, n), and what

digits occur in these sets (say for fixed m and k, 0 < n ≤ N )? If m = 1, x1,+ = φ, the
golden mean. For p

q
∈ Q, note p

q
xk can be written as p1

q1

√
5 + p2

q2
. Thus, in some sense,

it is sufficient to study p1

q1

√
5.

Remark 1.22 (Important). Many of the formulas for the continued fraction expansions
were first seen in numerical experiments. The insights that can be gained by investi-
gating cases on the computer cannot be underestimated. Often seeing the continued
fraction for some cases leads to an idea of how to do the calculations, and at least as
importantly what calculations may be interesting and worthwhile. For example,

√
5

4
= [0, 1, 1, 3, 1, 2]

√
5

8
= [0, 3, 1, 1, 2, 1, 2, 1, 1, 6]

√
5

16
= [0, 7, 6, 2, 3, 3, 3, 2, 6, 14, 6, 2, 3, 3, 3, 2, 6, 14]

√
5

10
= [0, 4, 2, 8]

√
5

6
= [0, 2, 1, 2, 6, 2, 1, 4]

√
5

12
= [0, 5, 2, 1, 2, 1, 2, 10]

√
5

14
= [0, 6, 3, 1, 4, 1, 14, 1, 4, 1, 3, 12]

√
5

28
= [0, 12, 1, 1, 10, 1, 6, 1, 10, 1, 1, 24]

√
5

42
= [0, 18, 1, 3, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 1, 36]. (1.28)

Project 1.23. The data in Remark 1.22 seem to indicate a pattern between the length
of the repeating block and the factorization of the denominator, as well as what the
largest digit is. Discover and prove interesting relations. How are the digits dis-
tributed (i.e., how many are 1’s, 2’s, 3’s and so on. Also, the periodic expansions
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are almost symmetric (if one removes the final digit, the remaining piece is of the form
abc . . . xyzyx . . . cba). Is this always true? What happens if we divide by other n, say
odd n?

Project 1.24. How are the continued fractions of n-equivalent numbers related? We
have seen quadratic irrationals have periodic continued fractions. Consider the fol-
lowing generalization. Fix functions f1, . . . , fk, and study numbers of the form

[f1(1), . . . , fk(1), f1(2), . . . , fk(2), f1(3), . . . , fk(3), f1(4), . . . ]. (1.29)

Which numbers have such expansions (say if the fi’s are linear)? See [Di] for some
results. For results on multiplying continued fractions by rationals see [vdP1], and see
[PS1, PS2, vdP3] for connections between power series and continued fractions.

Project 1.25. For more on the lengths of the period of
√

n or
√

p, as well as addi-
tional topics to investigate, see [Bec, Gl]. For a generalization to what has been called
“linearly periodic” expansions, see [Di].

1.4.3. More on digits of continued fractions. We start with an easily stated but I believe
still wide open problem:

Project 1.26 (Davenport). Determine whether the digits of the continued fraction ex-
pansion of 3

√
2 = [1, 3, 1, 5, 1, 1, 4, 1, . . . ] are bounded or not. This problem appears on

page 107 of [Da1].

Given α ∈ R, we can calculate its continued fraction expansion and investigate the
distribution of its digits. Without loss of generality we assume α ∈ (0, 1), as this shift
changes only the zeroth digit. Thus

α = [0, a1, a2, a3, a4, . . . ]. (1.30)

Given any sequence of positive integers ai, we can construct a number α with these as
its digits. However, for a generic α chosen uniformly in (0, 1), how often do we expect
to observe the nth digit in the continued fraction expansion equal to 1? To 2? To 3? And
so on.

If α ∈ Q then it has a finite continued fraction expansion; if α is a quadratic irrational
then its continued fraction expansion is periodic. In both of these cases there are really
only finitely many digits; however, if we stay away from rationals and quadratic irra-
tionals, then α will have a bona fide infinite continued fraction expansion, and it makes
sense to ask the above questions.

For the decimal expansion of a generic α ∈ (0, 1), we expect each digit to take
the values 0 through 9 with equal probability; as there are infinitely many values for
the digits of a continued fraction, each value cannot be equally likely. We will see,
however, that as n → ∞ the probability of the nth digit equalling k converges to
log2

(
1 + 1

k(k+2)

)
. An excellent source is [Kh].

For notational convenience, we adopt the following convention. Let A1,...,n(a1, . . . , an)
be the event that α ∈ [0, 1) has its continued fraction expansion α = [0, a1, . . . , an, . . . ].
Similarly An1,...,nk

(an1 , . . . , ank
) is the event where the zeroth digit is 0, digit n1 is an1 ,

. . . , and digit nk is ank
, and An(k) is the event that the zeroth digit is 0 and the nth digit

is k.
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Gauss conjectured that as n →∞ the probability that the nth digit equals k converges
to log2

(
1 + 1

k(k+2)

)
. In 1928, Kuzmin proved Gauss’ conjecture, with an explicit error

term:

Theorem 1.27 (Gauss-Kuzmin). There exist positive constants A and B such that
∣∣∣∣An(k)− log2

(
1 +

1

k(k + 2)

)∣∣∣∣ ≤
A

k(k + 1)
e−B

√
n−1. (1.31)

This is clearly compatible with Gauss’ conjecture, as for B > 0 the expression
e−B

√
n−1 tends to zero when n approaches +∞. The error term has been improved

by Lévy [Le] to Ae−Cn, and then further by Wirsing [Wir].
See [Kh, MT-B] for a proof. It is important to note that the digits are not indepen-

dent; the probability of observing a 1 followed by a 2 is not the product of the two
probabilities! See [MT-B] for this calculation.

Project 1.28. Assign explicit values to the constants A and B in the Gauss-Kuzmin
Theorem, or find A0, B0, N0 such that for all n ≥ N0, one may take A = A0 and
B = B0. Note: I’m not sure if this has been done, but it would be nice to have explicit
constants.

There are many open questions concerning the digits of a generic continued fraction
expansion. We know the digits in the continued fraction expansions of rationals and
quadratic irrationals do not satisfy the Gauss-Kuzmin densities in the limits; in the first
case there are only finitely many digits, while in the second the expansion is periodic.
What can one say about the structure of the set of α ∈ [0, 1) whose distribution of digits
satisfy the Gauss-Kuzmin probabilities? We know such a set has measure 1, but what
numbers are in this set?

The set of algebraic numbers is countable, hence of measure zero. Thus it is pos-
sible for the digits of every algebraic number to violate the Gauss-Kuzmin law. Com-
puter experimentation, however, indicates that the digits of algebraic numbers do seem
to follow the Gauss-Kuzmin probabilities (except for quadratic irrationals, of course).
The following subsets of real algebraic numbers were extensively tested by students at
Princeton (where the number of digits with given values were compared with the predic-
tions from the Gauss-Kuzmin Theorem, and in some cases pairs and triples were also
compared) and shown to have excellent agreement with predictions: n

√
p for p prime

and n ≤ 5 ([Ka, Law1, Mic1]) and roots of polynomials with different Galois groups
([AB]). To analyze the data from such experiments, one should perform basic hypoth-
esis testing. For some results on numbers whose digits violate the Gauss-Kuzmin Law,
see [Mic2].

Project 1.29. Investigate the digits of other families of algebraic numbers, for example,
the positive real roots of xn− p = 0 (see the mentioned student reports for more details
and suggestions). Alternatively, for a fixed real algebraic number α, one can investigate
its powers or rational multiples. There are two different types of experiments one can
perform. First, one can fix a digit, say the millionth digit, and examine its value as we
vary the algebraic number. Second, one could look at the same large block of digits for
an algebraic number, and then vary the algebraic number.
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While similar, there are different features in the two experiments. In the first we are
checking digit by digit. For a fixed number, its nth digit is either k or not; thus, the
only probabilities we see are 0 or 1. To have a chance of observing the Gauss-Kuzmin
probabilities, we need to perform some averaging (which is accomplished by looking at
roots of many different polynomials).

For the second, since we are looking at a large block of digits there is already a
chance of observing probabilities close to the Gauss-Kuzmin predictions. For each root
and each value (or pairs of values and so on), we obtain a probability in [0, 1]. One
possibility is to perform a second level of averaging by averaging these numbers over
roots of different polynomials. Another possibility is to construct a histogram plot of
the probabilities for each value. This allows us to investigate more refined questions.
For example, are the probabilities as likely to undershoot the predicted values as over-
shoot? How does that depend on the value? How are the observed probabilities for
the different values for each root distributed about the predictions: does it look like a
uniform distribution or a normal distribution?

Remark 1.30. If one studies say x3 − p = 0, as we vary p the first few digits of the
continued fraction expansions of 3

√
p are often similar. For example,

3
√

1000000087 = [1000, 34482, 1, 3, 6, 4, . . . ]
3
√

1000000093 = [1000, 32258, 15, 3, 1, 3, 1, . . . ]
3
√

1000000097 = [1000, 30927, 1, 5, 10, 19, . . . ]. (1.32)

The zeroth digit is 1000, which isn’t surprising as these cube roots are all approximately
103. Note the first digit in the continued fraction expansions is about 30000 for each.
Hence if we know the continued fraction expansion for 3

√
p for one prime p around 109,

then we have some idea of the first few digits of 3
√

q for primes q near p. Thus if we were
to look at the first digit of the cube roots of ten thousand consecutive primes near 109,
we would not expect to see the Gauss-Kuzmin probabilities.

Consider a large number n0. Primes near it can be written as n0 + x for x small.
Then

(n0 + x)1/3 = n
1/3
0 ·

(
1 +

x

n0

)1/3

≈ n
1/3
0 ·

(
1 +

1

3

x

n0

)

= n
1/3
0 +

x

3n
2/3
0

. (1.33)

If n0 is a perfect cube, then for small x relative to n0 we see these numbers should have
a large first digit. Thus, if we want investigate cube roots of lots of primes p that are
approximately the same size, the first few digits are not independent as we vary p. In
many of the experiments digits 50,000 to 1,000,000 were investigated: for cube roots of
primes of size 109, this was sufficient to see independent behavior (though ideally one
should look at autocorrelations to verify this claim). Also, the Gauss-Kuzmin Theorem
describes the behavior for n large; thus, it is worthwhile to throw away the first few
digits so we only study regions where the error term is small.
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There are many special functions in number theory. If we evaluate countably many
special functions at countably many points, we again obtain a countable set of mea-
sure 0. Thus, all these numbers’ digits could violate the Gauss-Kuzmin probabilities.
Experiments have shown, however, that special values of Γ(s) at rational arguments
([Ta])) and the Riemann zeta function ζ(s) at positive integers ([Kua]) seem to follow
the Gauss-Kuzmin probabilities.

Project 1.31. Consider the non-trivial zeros of ζ(s), or, more generally, the zeros of
any L-function. Do the digits follow the Gauss-Kuzmin distribution? For the Fourier
coefficients of an elliptic curve, ap = 2 cos(θp); how are the digits of θp distributed?
How are the digits of log n distributed? How are the digits of 2

√
n distributed for n

square-free?

We know quadratic irrationals are periodic, and hence cannot follow Kuzmin’s Law.
Only finitely many numbers occur in the continued fraction expansion. Thus, only
finitely many numbers have a positive probability of occurring in the expansion, but the
Gauss-Kuzmin probabilities are positive for all positive integers.

Project 1.32. What if we consider a family of quadratic irrationals with growing pe-
riod? As the size of the period grows, does the distribution of digits tend to the Gauss-
Kuzmin probabilities? See the warnings in Project 1.21 for more details.

1.4.4. Famous continued fraction expansions. Finally, we would be remiss if we did
not mention some famous continued fraction expansions. Often a special number whose
decimal expansion seems random has a continued fraction expansion with a very rich
structure. For example, compare the first 25 digits for e:

e = 2.718281828459045235360287 . . .

= [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, . . . ].

For π, the positive simple continued fraction does not look particularly illuminating:

π = 3.141592653589793238462643 . . .

= [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, . . . ].

If, however, we drop the requirement that the expansions are simple, the story is quite
different. One nice expression for π is

4

π
= 1 +

12

2 +
32

2 +
52

2 + · · ·

. (1.34)

There are many different types of non-simple expansions, leading to some of the most
beautiful formulas in mathematics. For example,

e = 2 +
1

1 +
1

2 +
2

3 +
3

4 + · · ·

. (1.35)
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For some nice articles and simple and non-simple continued fraction expansions, see
the entry at http://mathworld.wolfram.com/ (in particular, the entries on π
and e).

Project 1.33. Try to generalize as many properties as possible from simple continued
fractions to non-simple. Clearly, numbers do not have unique expansions unless we
specify exactly what the “numerators” of the non-simple expansions must be. One
often writes such expansions in the more economical notation

a

α+

b

β+

c

γ+

d

δ+
· · · . (1.36)

For what choices of a, b, c . . . and α, β, γ, . . . will the above converge? How rapidly
will it converge? Are there generalizations of the recurrence relations? How rapidly do
the numerators and denominators of the rationals formed by truncating these expan-
sions grow?

2. ADDITIVE AND ELEMENTARY NUMBER THEORY

One of the reasons I love number theory is how easy it is to state the problems. One
does not need several graduate classes to understand the formulation (though these are
useful in understanding partial results!). Some of the most famous that have defied so-
lution to this day are Goldbach’s Problem (every sufficiently large even number is the
sum of two primes, where sufficiently large is believed to mean at least 4) to the Twin
Prime Conjecture (there are infinitely many primes p such that p+2 is also prime). The
Circle Method provides a powerful way to conjecture answers for such questions; siev-
ing (inclusion-exclusion) can often give bounds. For example, if π2(x) is the number
of primes at most x, Brun proved π2(x) ≤ Cx/ log2 x for some c. This allows us to
deduce that the sum of the reciprocals of the twin primes converges. We call this sum
Brun’s constant, and it was how the pentium bug was discovered [Ni1, Ni2].

Below are a variety of problems related to additive and elementary number theory.

(1) More sums than differences: some of the projects are very elementary, some
require deep results from analysis for full generality. There are also numerical
projects related to trying to find sets with certain projects.

(2) Products being a perfect power: Some of these questions are quite elementary
and require only factorization of polynomials, while others require knowledge
of elliptic curves (especially the Mordell-Weil group of rational solutions and
the Birch and Swinnerton-Dyer conjecture).

(3) 3x+1 problem: An algorithm to help prove the 3x+1 conjecture was developed
by two of my former students. Their paper has a lot of small errors and vague
wording; it is a very doable project (I believe!) to clean this up. A rough
draft is already written, with numerous comments from me on what needs to be
fixed. Basic combinatorics should suffice, though being able to write computer
programs would be a tremendous asset.

2.1. More sums than differences sets.
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2.1.1. Introduction. Let S be a subset of the integers. We define the sumset S + S and
difference set S − S by

S + S = {s1 + s2 : si ∈ S}
S − S = {s1 − s2 : si ∈ S}, (2.1)

and denote the cardinality of a set A by |A|. As addition is commutative and subtrac-
tion is not, a typical pair of integers generates two differences but only one sum. It
is therefore reasonable to expect a generic finite set S will have a larger difference set
than sumset. We say a set is sum dominated (such sets are also called more sums than
differences, or MSTD, sets) if the cardinality of its sumset exceeds that of its difference
set. If the two cardinalities are equal we say the set is balanced, otherwise difference
dominated. Sum dominated sets exist: consider for example {0, 2, 3, 4, 7, 11, 12, 14}.
Nathanson wrote “Even though there exist sets A that have more sums than differences,
such sets should be rare, and it must be true with the right way of counting that the vast
majority of sets satisfies |A− A| > |A + A|.”

Recently Martin and O’Bryant [MO] showed there are many sum dominated sets.
Specifically, let IN = {0, . . . , N}. They prove the existence of a universal constant
κSD > 0 such that, for any N ≥ 14, at least κSD ·2N+1 subsets of IN are sum dominated
(there are no sum dominated sets in I13). Their proof is based on choosing a subset of
IN by picking each n ∈ IN independently with probability 1/2. The argument can be
generalized to independently picking each n ∈ IN with any probability p ∈ (0, 1), and
yields the existence of a constant κSD,p > 0 such that, as N → ∞, a randomly chosen
(with respect to this model) subset is sum dominated with probability at least κSD,p.
Similarly one can prove there are positive constants κDD,p and κB,p for the probability
of having a difference dominated or balanced set.

While the authors remark that, perhaps contrary to intuition, sum dominated sets are
ubiquitous, their result is a consequence of how they choose a probability distribution
on the space of subsets of IN . Suppose p = 1/2, as in their paper. With high probability
a randomly chosen subset will have N/2 elements (with errors of size

√
N ). Thus the

density of a generic subset to the underlying set IN is quite high, typically about 1/2.
Because it is so high, when we look at the sumset (resp., difference set) of a typical A
there are many ways of expressing elements as a sum (resp., difference) of two elements
of A. For example (see [MO]), if k ∈ A+A then there are roughly N/4−|N−k|/4 ways
of writing k as a sum of two elements in A (similarly, if k ∈ A − A there are roughly
N/4 − |k|/4 ways of writing k as a difference of two elements of A). This enormous
redundancy means almost all numbers which can be in the sumset or difference set are.
In fact, using uniform density on the subsets of IN (i.e., taking p = 1/2), Martin and
O’Bryant show that the average value of |A+A| is 2N−9 and that of |A−A| is 2N−5
(note each set has at most 2N +1 elements). In particular, it is only for k near extremes
that we have high probability of not having k in an A + A or an A − A. In [MO] they
prove a positive percentage of subsets of IN (with respect to the uniform density) are
sum dominated sets by specifying the fringe elements of A. Similar conclusions apply
for any value of p > 0.

Two fascinating questions to investigate are (1) what happens if p depends on N , and
(2) can one come up with explicit constructions of MSTD sets?
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2.1.2. Sum dominated sets in non-uniform models. At the end of their paper, Martin
and O’Bryant conjecture that if, on the other hand, the parameter p is a function of
N tending to zero arbitrarily slowly, then as N → ∞ the probability that a randomly
chosen subset of IN is sum dominated should also tend to zero. Recently Hegarty and
Miller proved this conjecture. Specifically, they showed

Theorem 2.1. Let p : N→ (0, 1) be any function such that

N−1 = o(p(N)) and p(N) = o(1). (2.2)

For each N ∈ N let A be a random subset of IN chosen according to a binomial
distribution with parameter p(N). Then, as N →∞, the probability that A is difference
dominated tends to one.

More precisely, let S , D denote respectively the random variables |A + A| and
|A− A|. Then the following three situations arise :

(i) p(N) = o(N−1/2) : Then

S ∼ (N · p(N))2

2
and D ∼ 2S ∼ (N · p(N))2. (2.3)

(ii) p(N) = c ·N−1/2 for some c ∈ (0,∞) : Define the function g : (0,∞) → (0, 2) by

g(x) := 2

(
e−x − (1− x)

x

)
. (2.4)

Then

S ∼ g

(
c2

2

)
N and D ∼ g(c2)N. (2.5)

(iii) N−1/2 = o(p(N)) : Let S c := (2N + 1)−S , D c := (2N + 1)−D . Then

S c ∼ 2 ·D c ∼ 4

p(N)2
. (2.6)

Theorem 2.1 proves the conjecture in [MO] and re-establishes the validity of Nathanson’s
claim in a broad setting. It also identifies the function N−1/2 as a threshold function for
the ratio of the size of the difference- to the sumset for a random set A ⊆ IN . Below the
threshold, this ratio is almost surely 2 + o(1), above it almost surely 1 + o(1). Part (ii)
tells us that the ratio decreases continuously (a.s.) as the threshold is crossed. Below
the threshold, part (i) says that most sets are ‘nearly Sidon sets’, that is, most pairs of
elements generate distinct sums and differences. Above the threshold, most numbers
which can be in the sumset (resp., difference set) usually are, and in fact most of these
in turn have many different representations as a sum (resp., a difference). However the
sumset is usually missing about twice as many elements as the difference set. Thus if
we replace ‘sums’ (resp., ‘differences’) by ‘missing sums’ (resp., ‘missing differences’),
then there is still a symmetry between what happens on both sides of the threshold.

The proof in general uses recent strong concentration results, though if p(N) =
o(N−1/2) Chebyshev’s theorem from probability suffices. The theorem can be gen-
eralized to arbitrary bilinear forms:
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Theorem 2.2. Let p : N → (0, 1) be a function satisfying (2.2). Let u, v be non-zero
integers with u ≥ |v|, GCD(u, v) = 1 and (u, v) 6= (1, 1). Put f(x, y) := ux + vy. For
a positive integer N , let A be a random subset of IN obtained by choosing each n ∈ IN

independently with probability p(N). Let Df denote the random variable |f(A)|. Then
the following three situations arise :

(i) p(N) = o(N−1/2) : Then

Df ∼ (N · p(N))2. (2.7)

(ii) p(N) = c · N−1/2 for some c ∈ (0,∞) : Define the function gu,v : (0,∞) →
(0, u + |v|) by

gu,v(x) := (u + |v|)− 2|v|
(

1− e−x

x

)
− (u− |v|)e−x. (2.8)

Then

Df ∼ gu,v

(
c2

u

)
N. (2.9)

(iii) N−1/2 = o(p(N)) : Let D c
f := (u + |v|)N −Df . Then

D c
f ∼ 2u|v|

p(N)2
. (2.10)

Here is a sample of issues which could be the subject of further investigations.

Project 2.3. One unresolved matter is the comparison of arbitrary difference forms in
the range where N−3/4 = O(p) and p = O(N−3/5). Here the problem is that the bino-
mial model itself does not prove of any use. This provides, more generally, motivation
for looking at other models. Obviously one could look at the so-called uniform model
on subsets (see [JŁR]), but this seems a more awkward model to handle. Note that the
property of one binary form dominating another is not monotone, or even convex.

Project 2.4. A very tantalizing problem is to investigate what happens while crossing a
sharp threshold.

Project 2.5. One can ask if the various concentration estimates in Theorem 2.1 can
be improved. When p = o(N−1/2) we have only used an ordinary second moment ar-
gument, and it is possible to provide explicit estimates. The range N−1/2 = o(p(N))
seems more interesting, however. Here we proved that the random variable S c has
expectation of order P (N)2, where P (N) = 1/p(N), and is concentrated within
P (N)3/2 log2 P (N) of its mean. Now one can ask whether the constant 3/2 can be
improved, or at the very least can one get rid of the logarithm?

Project 2.6. It is natural to ask for extensions of our results to Z-linear forms in more
than two variables. Let

f(x1, ..., xk) = u1x1 + · · ·+ ukxk, ui ∈ Z6=0, (2.11)

be such a form. We conjecture the following generalization of Theorem 3.1 :
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Conjecture 2.7. Let p : N→ (0, 1) be a function satisfying (2.2). For a positive integer
N , let A be a random subset of IN obtained by choosing each n ∈ IN independently
with probability p(N). Let f be as in (4.1) and assume that GCD(u1, ..., un) = 1. Set

θf := #{σ ∈ Sk : (uσ(1), ..., uσ(k)) = (u1, ..., uk)}. (2.12)

Let Df denote the random variable |f(A)|. Then the following three situations arise :

(i) p(N) = o(N−1/k) : Then

Df ∼ 1

θf

(N · p(N))k. (2.13)

(ii) p(N) = c · N−1/k for some c ∈ (0,∞) : There is a rational function R(x0, ..., xk)
in k + 1 variables, which is increasing in x0, and an increasing function
gu1,...,uk

: (0,∞) → (0,
∑k

i=1 |ui|) such that

Df ∼ gu1,...,uk
(R(c, u1, ..., uk)) ·N. (2.14)

(iii) N−1/k = o(p(N)) : Let D c
f :=

(∑k
i=1 |ui|

)
N −Df . Then

D c
f ∼ 2θf

∏k
i=1 |ui|

p(N)k
. (2.15)

2.1.3. Creating dense families of sum dominated sets. Though MSTD sets are rare,
they do exist (and, in the uniform model, are somewhat abundant by the work of Mar-
tin and O’Bryant). Examples go back to the 1960s. Conway is said to have discov-
ered {0, 2, 3, 4, 7, 11, 12, 14}, while Marica gave {0, 1, 2, 4, 7, 8, 12, 14, 15} in 1969 and
Freiman and Pigarev found {0, 1, 2, 4, 5, 9, 12, 13, 14, 16, 17, 21, 24, 25, 26, 28, 29} in
1973. Recent work includes infinite families constructed by Hegarty [He] and Nathanson
[Na2], as well as existence proofs by Ruzsa [Ru1, Ru2, Ru3].

Most of the previous constructions1 of infinite families of MSTD sets start with a
symmetric set which is then ‘perturbed’ slightly through the careful addition of a few
elements that increase the number of sums more than the number of differences; see
[He, Na2] for a description of some previous constructions and methods. In many
cases, these symmetric sets are arithmetic progressions; such sets are natural starting
points because if A is an arithmetic progression, then |A + A| = |A− A|.2

We present a new method (by Miller-Orosz-Scheinerman) which takes an MSTD
set satisfying certain conditions and constructs an infinite family of MSTD sets. While
these families are not dense enough to prove a positive percentage of subsets of {1, . . . , r}
are MSTD sets, we are able to elementarily show that the percentage is at least C/r4

for some constant C. Thus our families are far denser than those in [He, Na2]; triv-
ial counting3 shows all of their infinite families give at most f(r)2r/2 of the subsets

1An alternate method constructs an infinite family from a given MSTD set A by considering At =
{∑t

i=1 aim
i−1 : ai ∈ A}. For m sufficiently large, these will be MSTD sets; this is called the base

expansion method. Note, however, that these will be very sparse. See [He] for more details.
2As |A+A| and |A−A| are not changed by mapping each x ∈ A to αx+β for any fixed α and β, we

may assume our arithmetic progression is just {0, . . . , n}, and thus the cardinality of each set is 2n + 1.
3For example, consider the following construction of MSTD sets from [Na2]: let m, d, k ∈ N with

m ≥ 4, 1 ≤ d ≤ m − 1, d 6= m/2, k ≥ 3 if d < m/2 else k ≥ 4. Set B = [0,m − 1]\{d}, L =
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of {1, . . . , r} (for some polynomial f(r)) are MSTD sets, implying a percentage of at
most f(r)/2r/2.

We first introduce some notation. The first is a common convention, while the second
codifies a property which we’ve found facilitates the construction of MSTD sets.

• We let [a, b] denote all integers from a to b; thus [a, b] = {n ∈ Z : a ≤ n ≤ b}.

• We say a set of integers A has the property Pn (or is a Pn-set) if both its sumset
and its difference set contain all but the first and last n possible elements (and
of course it may or may not contain some of these fringe elements).4 Explicitly,
let a = min A and b = max A. Then A is a Pn-set if

[2a + n, 2b− n] ⊂ A + A (2.16)

and

[−(b− a) + n, (b− a)− n] ⊂ A− A. (2.17)

We can now state our construction and main result.

Theorem 2.8 (Miller-Orosz-Scheinerman [MOS]). Let A = L ∪ R be a Pn, MSTD set
where L ⊂ [1, n], R ⊂ [n + 1, 2n], and 1, 2n ∈ A;5 see Remark 2.9 for an example of
such an A. Fix a k ≥ n and let m be arbitrary. Let M be any subset of [n + k + 1, n +
k + m] with the property that it does not have a run of more than k missing elements
(i.e., for all ` ∈ [n + k + 1, n + m + 1] there is a j ∈ [`, ` + k − 1] such that j ∈ M ).
Assume further that n + k + 1 6∈ M and set A(M ; k) = L ∪O1 ∪M ∪O2 ∪R′, where
O1 = [n + 1, n + k], O2 = [n + k + m + 1, n + 2k + m] (thus the Oi’s are just sets of
k consecutive integers), and R′ = R + 2k + m. Then

(1) A(M ; k) is an MSTD set, and thus we obtain an infinite family of distinct MSTD
sets as M varies;

(2) there is a constant C > 0 such that as r → ∞ the percentage of subsets of
{1, . . . , r} that are in this family (and thus are MSTD sets) is at least C/r4.

Remark 2.9. In order to show that our theorem is not trivial, we must of course exhibit
at least one Pn, MSTD set A satisfying all our requirements (else our family is empty!).

{m−d, 2m−d, . . . , km−d}, a∗ = (k+1)m−2d and A = B∪L∪(a∗−B)∪{m}. Then A is an MSTD
set. The width of such a set is of the order km. Thus, if we look at all triples (m, d, k) with km ≤ r
satisfying the above conditions, these generate on the order of at most

∑
k≤r

∑
m≤r/k

∑
d≤m 1 ¿ r2,

and there are of the order 2r possible subsets of {0, . . . , r}; thus this construction generates a negligible
number of MSTD sets. Though we write f(r)/2r/2 to bound the percentage from other methods, a more
careful analysis shows it is significantly less; we prefer this easier bound as it is already significantly less
than our method. See for example Theorem 2 of [He] for a denser example.

4It is not hard to show that for fixed 0 < α ≤ 1 a random set drawn from [1, n] in the uniform model
is a Pbαnc-set with probability approaching 1 as n →∞.

5Requiring 1, 2n ∈ A is quite mild; we do this so that we know the first and last elements of A.
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We may take the set6 A = {1, 2, 3, 5, 8, 9, 13, 15, 16}; it is an MSTD set as

A + A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 28, 29, 30, 31, 32}
A− A = {−15,−14,−13,−12,−11,−10,−8,−7,−6,−5,−4,−3,−2,−1,

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15} (2.18)

(so |A + A| = 30 > 29 = |A − A|). A is also a Pn-set, as (2.16) is satisfied since
[10, 24] ⊂ A + A and (2.17) is satisfied since [−7, 7] ⊂ A− A.

For the uniform model, a subset of [1, 2n] is a Pn-set with high probability as n →∞,
and thus examples of this nature are plentiful. For example, of the 1748 MSTD sets with
minimum 1 and maximum 24, 1008 are Pn-sets.

Project 2.10. Read [MOS]. Can their argument be improved to yield a positive per-
centage through explicit construction?

Instead of sums and differences of two sets, we can consider a more general problem.
Instead of searching for A such that |A + A| > |A − A|, we now consider the more
general problem of when

|ε1A + · · ·+ εnA| > |ε̃1A + · · ·+ ε̃nA| , εi, ε̃i ∈ {−1, 1}. (2.19)

Consider the generalized sumset

fj1, j2(A) = A + A + · · ·+ A− A− A− · · · − A, (2.20)

where there are j1 pluses7 and j2 minuses, and set j = j1 + j2. Our notion of a Pn-set
generalizes, and we find that if there exists one set A with |fj1, j2(A)| > |fj′1, j′2(A)|,
then we can construct infinitely many such A. Note without loss of generality that we
may assume j1 ≥ j2.8

Definition 2.11 (P j
n-set.). Let A ⊂ [1, k] with 1, k,∈ A. We say A is a P j

n-set if any
fj1, j2(A) contains all but the first n and last n possible elements.

Remark 2.12. Note that a P 2
n -set is the same as what we called a Pn-set earlier.

We expect the following generalization of Theorem 2.8 to hold.

Conjecture 2.13. For any fj1, j2 and fj′1, j′2 , if there exists a finite set of integers A which
is (1) a P j

n-set; (2) A ⊂ [1, 2n] and 1, 2n ∈ A; and (3) |fj1, j2(A)| > |fj′1, j′2(A)|, then
there exists an infinite family of such sets.

The difficulty in proving the above conjecture is that we need to find a set A satisfying
|fj1, j2(A)| > |fj′1, j′2(A)|; once we find such a set, we can mirror the construction from
Theorem 2.8. Currently we can only find such A for j ∈ {2, 3}:

6This A is trivially modified from [?] by adding 1 to each element, as we start our sets with 1 while
other authors start with 0. We chose this set as our example as it has several additional nice properties
that were needed in earlier versions of our construction which required us to assume slightly more about
A.

7By a slight abuse of notation, we say there are two sums in A + A− A, as is clear when we write it
as ε1A + ε2A + ε3A.

8This follows as we are only interested in |fj1, j2(A)|, which equals |fj2, j1(A)|. This is because B
and −B have the same cardinality, and thus (for example) we see A + A− A and −(A − A− A) have
the same cardinality.
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Theorem 2.14. Conjecture 2.13 is true for j ∈ {2, 3}.

Similar to the original result, it is crucial that we have a set to start the process. The
following set was obtained by taking elements in {2, . . . , 49} to be in A with probabil-
ity9 1/3 (and, of course, requiring 1, 50 ∈ A); it took about 300000 sets to find the first
one satisfying our conditions:

A = {1, 2, 5, 6, 16, 19, 22, 26, 32, 34, 35, 39, 43, 48, 49, 50}. (2.21)

To be a P 3
25-set we need to have A+A+A ⊃ [n+3, 6n−n] = [28, 125] and A+A−A ⊃

[−n + 2, 3n − 1] = [−23, 74]. A simple calculation shows A + A + A = [3, 150], all
possible elements, while A + A − A = [−48, 99]\{−34} (i.e., every possible element
but -34). Thus A is a P 3

25-set satisfying |A + A + A| > |A + A−A|, and thus we have
the example we need to prove Theorem 2.14. We could also have taken

A = {1, 2, 3, 4, 8, 12, 18, 22, 23, 25, 26, 29, 30, 31, 32, 34, 45, 46, 49, 50}, (2.22)

which has the same A + A + A and A + A− A.

Project 2.15. Find a set A that will work for |A + A + A + A| > |A + A−A−A| or
|A + A + A + A| > |A + A + A− A|.
Project 2.16. Generalize the above to |a1A + a2A + a3A| > |b1A + b2A + b3A.

2.2. Structure of MSTD sets. Frequently in mathematics we are interested in subsets
of a larger collection where the subsets possess an additional property. In this sense,
they are no longer generic subsets; however, we can ask what other properties they have
or omit.

We observed earlier (Footnote 4) that for a constant 0 < α ≤ 1, a set randomly
chosen from [1, 2n] is a Pbαnc-set with probability approaching 1 as n → ∞. MSTD
sets are of course not random, but it seems logical to suppose that this pattern continues.

Project 2.17. Prove or disprove:

Conjecture 2.18. Fix a constant 0 < α ≤ 1/2. Then as n → ∞ the probability that a
randomly chosen MSTD set in [1, 2n] containing 1 and 2n is a Pbαnc-set goes to 1.

In our construction and that of [MO], a collection of MSTD sets is formed by fixing
the fringe elements and letting the middle vary. The intuition behind both is that the
fringe elements matter most and the middle elements least. Motivated by this it is inter-
esting to look at all MSTD sets in [1, n] and ask with what frequency a given element is
in these sets. That is, what is

γ(k; n) =
#{A : k ∈ A and A is an MSTD set}

#{A : A is an MSTD set} (2.23)

as n →∞? We can get a sense of what these probabilities might be from Figure 3.
Note that, as the graph suggests, γ is symmetric about n+1

2
, i.e. γ(k, n) = γ(n + 1−

k, n). This follows from the fact that the cardinalities of the sumset and difference set
are unaffected by sending x → αx + β for any α, β. Thus for each MSTD set A we get

9Note the probability is 1/3 and not 1/2.
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FIGURE 3. Estimation of γ(k, 100) as k varies from 1 to 100 from a
random sample of 4458 MSTD sets.

a distinct MSTD set n + 1 − A showing that our function γ is symmetric. These sets
are distinct since if A = n + 1− A then A is sum-difference balanced.10

Project 2.19. Make the following argument rigorous: From [MO] we know that a pos-
itive percentage of sets are MSTD sets. By the central limit theorem we then get that
the average size of an MSTD set chosen from [1, n] is about n/2. This tells us that on
average γ(k, n) is about 1/2. The graph above suggests that the frequency goes to 1/2
in the center.

The above leads us to the following conjecture:

Project 2.20.

Conjecture 2.21. Fix a constant 0 < α < 1/2. Then limn→∞ γ(k, n) = 1/2 for
bαnc ≤ k ≤ n− bαnc. More generally, we could ask which non-decreasing functions
f(n) have f(n) → ∞, n − f(n) → ∞ and limn→∞ γ(k, n) = 1/2 for all k such that
bf(n)c ≤ k ≤ n− bf(n)c.

Note: Kevin O’Bryant may have some partial results along these lines; check with
me before pursuing this.

2.3. Catalan’s conjecture and products of consecutive integers. We can show that
x(x + 1)(x + 2)(x + 3) is never a perfect square or cube for x a positive integer. One

10The following proof is standard (see, for instance, [Na2]). If A = n + 1−A then

|A + A| = |A + (n + 1−A)| = |n + 1 + (A−A)| = |A−A|. (2.24)
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proof involves using elliptic curves to handle some cases; without using elliptic curves,
one can handle many cases by reducing to the Catalan equation, and in fact show it is
never a perfect power.

Catalan’s conjecture is that the only adjacent non-trivial perfect powers are 8 and 9
(we say n is a perfect power if n = ma for some a ≥ 2. Catalan’s theorem was proved
in 2002. Explicitly

Theorem 2.22 (Mihailescu 2002). Let a, b ∈ Z and n,m ≥ 2 positive integers. Con-
sider the equation

an − bm = ±1. (2.25)
The only solution are 32 − 23 = 1, 23 − 32 = −1, 1n − 0m = 1, and 0n − 1m = −1.

Consider
x(x + 1)(x + 2)(x + 3 = y3. (2.26)

We can re-group the factors and obtain

x(x + 3) · (x + 1)(x + 2) =
(
x2 + 3x

) · (x2 + 3x + 2) = y3. (2.27)

Letting z = x2 + 3x + 1, we find that

(z − 1)(z + 1) = y3. (2.28)

We may re-write this as
z2 − y3 = 1. (2.29)

The only solution is z = 3, y = 2, and this does not correspond to x a positive integer.

We now consider the obvious generalization to showing that x(x + 1)(x + 2)(x + 3)
is never a perfect power. The only change in the previous argument is that we now have
ym instead of y3 for some positive integer m ≥ 2. We again obtain

z2 − ym = 1, (2.30)

and again z = x2 + 3x + 1 = 3, which has no solution. Note this also handles the case
m = 2 (ie, x(x + 1)(x + 2)(x + 3) is never a square). This immediately gives

z2 − 1 = y2 (2.31)

or equivalently
z2 = y2 + 1, (2.32)

and there are no adjacent perfect squares other than 0 and 1; note z = 0 yields a non-
integral x.

Project 2.23. Can this be generalized to products of more factors? What if we replace
a perfect power by twice a perfect power?

Note: I have a lot of notes (joint with Cosmin Roman and Warren Sinnott) about
elementary approaches that do not use Mihailescu’s theorem, or only uses it in some
cases. For example, let’s consider the question of whether

x(x + 1)(x + 2)(x + 3) = y2 (2.33)

has any solutions in positive integers. (We find that it does not.) Let

u = 2x + 3, z = u2 (2.34)
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so that

(4y)2 = 2x(2x + 2)(2x + 4)(2x + 6)

= (u− 3)(u− 1)(u + 1)(u + 3)

= (u2 − 1)(u2 − 9)

= (z − 1)(z − 9). (2.35)

The difference between z− 1 and z− 9 is 8, so the factors z− 1 and z− 9 have at most
a power of 2 in common; since the left-hand side of the equations above is a square we
may write

z − 1 = 2av2, z − 9 = 2bw2, (2.36)
where a, b are either 0 or 1 and a + b is even, i.e., either a = b = 0 or a = b = 1.

Case One: a = b = 0. Here we have

z = 1 + v2 = 9 + w2, (2.37)

so
8 = v2 − w2 = (v − w)(v + w). (2.38)

So v − w and v + w are divisors of 8, the second larger than the first; also v − w and
v + w must have the same parity. The only possibility is then

v − w = 2, v + w = 4, (2.39)

which implies that v = 3, and z = 10. But z = u2 is a square, so there are no solutions
in this case.

Case Two: a = b = 1. Here we have

z = 1 + 2v2 = 9 + 2w2, (2.40)

so
4 = v2 − w2 = (v − w)(v + w). (2.41)

So v − w and v + w are divisors of 4, the second larger than the first, and both of the
same parity; so there are no solutions in this case either.

To see how elliptic curves can arise in questions such as this, consider now

x(x + 1)(x + 2)(x + 3) = y3. (2.42)

Letting u = x− 1 we may re-write the above as

(u− 1)u(u + 1)(u + 2) = y3. (2.43)

The only divisors any of the four factors can have in common are 2 and 3.

Assume that 3 divides at most one of the factors. Thus, 3 divides either u or u + 1.
Split the multiplication into two parts, (u− 1)(u + 1) and u(u + 2). All the factors of 2
occur in either the first multiplication or the second, but not both. As we are assuming
3 divides u or u + 1, this implies that each of the two multiplications must be a perfect
cube. In particular, we have

(u− 1)(u + 1) = w3. (2.44)
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This simplifies to
u2 − w3 = 1. (2.45)

This is the Catalan Equation, which is now known to have just one solution, namely
u = 3 and w = 2. Substituting in for u gives

(3− 1)(3)(3 + 1)(3 + 2) = 120 = 23 · 3 · 5, (2.46)

which is not a perfect square.

We are left with the case when 3|u and 3|(u + 2). Clearly 2|u(u + 1). If, however, 4
does not divide u(u + 1), then we must have

u(u + 1) = 2w3, (u− 1)(u + 2) = 22v3. (2.47)

Multiplying the first equation by 4 gives

(2u)(2u + 2) = (2w)3. (2.48)

Let z = 2u + 1. Then the above equation becomes

(z − 1)(z + 1) = (2w)3, (2.49)

which may be re-written as
z2 − (2w)3 = 1. (2.50)

We again obtain the Catalan equation, which now has the unique solution z = 3, w = 1.
If z = 3 then u = 1, and (u− 1)u(u + 1)(u + 2) = 0, implying there are no solutions.

Thus, we are left with the case when 3|u, 3|(u + 2), and 4|u(u + 1). We could use
elliptic curve arguments again. If (u− 1)(u + 1) ≡ 9 mod 27, we would have

(u− 1)(u + 1) = 9w3. (2.51)

This leads to the elliptic curve
u2 = 9w3 + 1. (2.52)

Letting u2 = u
2

and w2 = w
2

we obtain the elliptic curve

E : u2
2 = w3

2 + 81. (2.53)

As L(E, 1) ≈ 2.02, this curve has rank 0, and the only rational solutions are the torsion
points. Direct calculation gives the torsion group is Z/6Z, generated by [0, 9]. Further
computation should yield none of these give valid solutions to the original equation.
Unfortunately, if (u− 1)(u + 1) ≡ 3 mod 27, we obtain a rank 2 elliptic curve, which
is a little harder to analyze. Fortunately, if this is the case than instead of looking at
(u − 1)(u + 1), we can look at u(u + 2), which is equivalent to 9 mod 27. Letting
z = u− 1, this gives us

(z − 1)(z + 1) = 9v3, (2.54)
and this is the same equation as before. It will also have zero rank, and torsion group
Z/6Z generated by [0, 9]. Direct calculation will finish the proof.

Project 2.24. See how far arguments like this can be pushed for this and related prob-
lems. Note: if you decide to work on this, email me and I’ll send you my work in
progress with Roman and Sinnott.
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2.4. The 3x + 1 Problem. Let x be a positive odd integer. Then 3x + 1 is even, and
we can find a unique k > 0 such that (3x + 1)/2k is an odd number not divisible by
3. We denote this map by T , which is defined on Π = {` > 0 : ` ≡6 1 or 5} (the
set of positive integers not divisible by 2 or 3). The famous 3x + 1 Conjecture states
that for any x ∈ Π there is an n such that T n(x) = 1 (where T 2(x) = T (T (x)) and
so forth). As of February 1st, 2007, the conjecture has been numerically verified up to
13 · 258 ≈ 3.7 · 1018; see [?, ?] for details.

People working on the Syracuse-Kakutani-Hasse-Ulam-Hailstorm-Collatz-(3x + 1)-
Problem (there have been a few) often refer to two striking anecdotes. One is Erdös’
comment that “Mathematics is not yet ready for such problems.” The other is Kaku-
tani’s communication to Lagarias: “For about a month everybody at Yale worked on
it, with no result. A similar phenomenon happened when I mentioned it at the Univer-
sity of Chicago. A joke was made that this problem was part of a conspiracy to slow
down mathematical research in the U.S.” Coxeter has offered $50 for its solution, Erdös
$500, and Thwaites, £1000. The problem has been connected to holomorphic solutions
to functional equations, a Fatou set having no wandering domain, Diophantine approxi-
mation of log2 3, the distribution mod 1 of

{(
3
2

)k
}∞

k=1
, ergodic theory on Z2, undecid-

able algorithms, and geometric Brownian motion, to name a few (see [Lag1, Lag2]).
The following definition is a useful starting point for investigations of elements of

Π = {` > 0 : ` ≡6 1 or 5} (the set of positive integers not divisible by 2 or 3) under the
3x + 1 map.

Definition 2.25 (m-path). The m-path of an x ∈ Π is the m-tuple of positive integers
(k1, . . . , km) such that

T i(x) =
3T i−1(x) + 1

2ki
, i ∈ {1, . . . , m}. (2.55)

We often write γm(x) for the m-path of x.

For example, the first few iterates of 41 are 31, 47, 71, and 107. Thus 41 has a 1-path
of (2), a 2-path of (2, 1), a 3-path of (2, 1, 1) and a 4-path of (2, 1, 1, 1). Similarly the 4-
path of 11 (which iterates to 17, 13, 5 and then 1) is (1, 2, 3, 4). The m-paths are useful
in studying the 3x + 1 problem. For example, if the sum of the elements in the m-path
of x is “close” to m then the mth iterate of x is “large” relative to x (as we see in our
example with x = 41); if the sum of the elements in the m-path of x is “large” relative
to m then the mth iterate of x is “small” relative to x (as we see in our example with
x = 11; in fact, all further iterates are 1, so 11 has an m-path of (1, 2, 3, 4, 2, 2, . . . , 2),
where there are m − 4 twos at the end). Crucial in our investigations is the Structure
Theorem of Sinai and Kontorovich-Sinai [Si, KonSi].

Theorem 2.26 (The Structure Theorem). Let k1, . . . , km be given positive integers, and
ε ∈ {1, 5}. Then there exists a qm ∈ [0, 6 · 2k1+···+km) with qm ≡6 ε such that

{x ∈ Π : γm(x) = (k1, . . . , km)} =
{
6 · 2k1+···+kmp + qm : p ∈ N}

. (2.56)

Hence, for given k1, . . . , km, we have two full arithmetic progressions, one for ε = 1
and one for ε = 5. Further, we need only find the minimal representatives in order
to completely determine the solutions. Two of my former students, Bruce Adcock and
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Sucheta Soundarajan, constructing a nice algorithm to determine the minimal repre-
sentative of an arbitrary m-path. We investigated the properties of paths associated to
elements of Π which do not iterate to 1 (i.e., elements which eventually iterate into a
cycle or diverge to infinity). Our main result is that

if an element x > 1 of Π is the minimal element of a cycle of
length m, then m > 6, 586, 818, 669.

(Check and see if our number has been improved, and give statements on what we
could improve it to if we improve regions where we know 3x + 1 holds.) The two
main ingredients of the proof are (1) an analysis of paths of iterates which always remain
above the starting seed, and (2) knowing the 3x+1 conjecture is true for all x ∈ Π with
x ≤ B. Our results extend those of other researches (see [Br, Sim, SimWe, Sin] and
the references therein), though one must be careful in comparing the strength of bounds
from paper to paper, as often different variants of the 3x + 1 problem are used11.

Project 2.27. Take the preprint that I have and clean it up. This was a really nice
project which the authors never finished writing up, and which I’ve been saving for
a student. There are a few small mistakes throughout the paper, lots of places where
the explanations are unclear. I have made numerous comments throughout the paper
to help whomever looks at this complete the project. While it will take some time to
clean everything up, there are some nice ideas here, and it is definitely a significant
contribution to join the team and get this paper to publication.

3. DIFFERENTIAL EQUATIONS

In [KP] the following equation is shown to be related to the propagation of infections:

fn

((
x
y

))
=

(
1− (1− ax)(1− by)n

1− (1− ay)(1− bx)

)
(3.1)

(where we have replaced d with 1− a). We study fn : [0, 1]2 → [0, 1]2.
The model is as follows. We have a central hub and n satellite vertices forming a

graph. There are only edges from each satellite to the central hub; thus the satellite
vertices communicate with each other only through the hub. The goal is to understand
how viruses propagate in such a network; this is not an unreasonable model for certain
situations (such as airlines). We have a complete solution when n = 1 (which is fairly
trivial) and a conjecture as to what is happening for general n, namely that the critical
threshold is comparing b to (1− a)/

√
n. If b < (1− a)/

√
n then the behavior is trivial,

and all initial configurations collapse to the trivial fixed point; we conjecture that if
b > (1 − a)/

√
n all iterates end up at a unique non-trivial fixed point (so long as we

don’t start off at the trivial fixed point of the system).
I have a large draft of a paper on this with several colleagues (Leo Kontorovich and

Amitabha Roy); the paper is available on the webpage (it is poorly written, more as a
free association of results as we attempt to understand the system, so perhaps it’s worth

11We pull out all powers of 2 in the same step as multiplying by 3 and adding 1. Some authors use
instead the map T1(x) = 3x + 1 for x odd and x/2 for x even, while others use T2(x) = (3x + 1)/2 for
x odd and x/2 for x even.
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reading as an insight into how we chip away at a problem). We have lots of numerics
supporting our conjecture. It might be possible to prove our results with sufficiently
delicate coding and error analysis. To prove our claims in many regions involves nice
applications of linear algebra and multivariable calculus, and an introduction to fixed
point theorems.

4. PROBABILITY

(1) Products of Poisson Random Variables: elementary number theory and proba-
bility theory (some Fourier analysis is useful in understanding the applications).

(2) Sabermetrics: elementary probability theory, though statistics would help if you
are interested in numerical investigations / comparisons.

(3) Die battles: elementary probability and combinatorics.
(4) Beyond the pidgeonhole principle: elementary probability and combinatorics.
(5) Differentiating identities: elementary probability and combinatorics.

4.1. Products of Poisson Random Variables. We live in an age where we are con-
stantly bombarded with massive amounts of data. Satellites orbiting the earth daily
transmit more information than is in the entire Library of Congress; researchers must
quickly sort through these data sets to find the relevant pieces. It is thus not surprising
that people are interested in patterns in data. One of the more interesting, and initially
surprising, is Benford’s law.

At some point in secondary school, we are introduced to scientific notation: any posi-
tive number x may be written as M(x)·10k, where M(x) ∈ [1, 10) is the mantissa and k
is an integer. Thus 1701.24601 would be written as 1.70124601 ·103 and .00729735257
would be 7.29735257 · 10−3; the first has a leading digit (or first digit) of 1 while the
second has a leading digit of 7.

Definition 4.1 (Benford’s Law). Benford’s law states that for many natural sets of data,
the probability of observing a first digit of d is log10

(
d+1

d

)
.

Other useful definitions:

Definition 4.2 (Modular (or clock) arithmetic). We say a ≡ b mod n if a−b is a multiple
of n. This is frequently called clock arithmetic, as this is the most common example; on
a clock, 13 o’clock and 1 o’clock are both represented by 1.

Definition 4.3 (Equidistributed modulo 1). A sequence {zn}∞n=−∞ is equidistributed
modulo 1 if

lim
N→∞

#{n : |n| ≤ N, zn mod 1 ∈ [a, b]}
2N + 1

= b− a (4.1)

for all [a, b] ⊂ [0, 1]. A similar definition holds for {zn}∞n=0.

We may generalize Benford’s law in many ways. The two most common are:
(1) Instead of studying the distribution of the first digit, we may study the distri-

bution of the first two, three, or more generally the mantissa of our number.
Benford’s law becomes the probability of observing a mantissa of at most s is
log10 s.
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(2) Instead of working base 10, we may work base B, in which case the Benford
probabilities become logB

(
d+1

d

)
for the distribution of the first digit, and logB s

for a mantissa of at most s.
It has been shown (see for example [JKKKM, ?]) that products of random variables

converge to Benford’s law. The mathematics behind this in full generality typically uses
Fourier or Mellin transforms and lead to terrific estimates on the rate of convergence, but
the rough idea is not hard to explain. Benford’s law is really equivalent to the statement
that {xn} is Benford if and only if {log10 xn mod 1} is equidistributed in [0, 1]. The
proof follows from the following two lemmas:

Lemma 4.4. The first digits of 10u and 10v are the same in base b if and only if u ≡ v
mod 1.

Consider the unit interval [0, 1). For d ∈ {1, . . . , 9}, define pd by

10pd = d or equivalently pd = log10 d. (4.2)

For d ∈ {1, . . . , 9}, let
Id = [pd, pd+1) ⊂ [0, 1). (4.3)

Lemma 4.5. The first digit of 10y is d if and only if y mod 1 ∈ Id.

Why does this imply products converge to Benford’s law? Let X1, . . . , Xn be inde-
pendent, identically distributed random variables with mean µ, variance σ2 and finite
higher moments (the result holds under far weaker conditions). Then X1 + · · · + Xn

converges to being normally distributed with mean nµ and variance nσ2. We, however,
want to study the product Yn = X1 · · ·Xn. Whenever we see a product our first thought
should be to take logarithms. Thus log10 Yn = log10 X1 + · · · + log10 Xn. If we let µ̃
and σ̃2 be the mean and variance of log10 Xi, we see that Yn converges to a Gaussian
with mean nµ̃ and variance nσ̃2; however, to obtain Benford behavior we just need to
understand the distribution of log10 Yn modulo 1. It is not hard to show that as the vari-
ance of a normal distribution tends to infinity, modulo 1 the probability converges to the
uniform distribution, and this is where we obtain the Benford behavior. The proof is a
nice application of Fourier analysis (in particular, Poisson summation), though it could
probably be proved by a careful use of Taylor’s theorem with remainder.

For reasons I don’t want to get into in a public post, it is of interest to study products
of Poisson random variables. Recall X is said to be a Poisson random variable with
parameter λ if the probability X equals n is λne−λ/n!.

Project 4.6. Derive a closed form expression for the probability density of X1 · · ·Xn,
where each Xi is a Poisson random variable with parameter λ. Obtain as tractable
expressions as possible. This will require some number theory. For example, say n = 2.
The probability that X1X2 = 42 is much larger than the probability the product is either
41 or 43, as the latter two are primes and 42 is composite. For our purposes, it would
suffice to have a good formula for the probability the product is in d ·10k to (d+1) ·10k

for any d ∈ {1, . . . , 9} and k a non-negative integer.

4.2. Sabermetrics. There are numerous fun problems in sabermetrics (applying math/stats
to baseball). Here are two of my favorites.
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4.2.1. The Pythagorean Won-Loss Theorem. It has been noted that in many profes-
sional sports leagues a good predictor of a team’s end of season won-loss percentage
is Bill James’ Pythagorean Formula RSobs

γ

RSobs
γ+RAobs

γ , where RSobs (resp. RAobs) is the
observed average number of runs scored (allowed) per game and γ is a constant for the
league; for baseball the best agreement is when γ is about 1.82. This formula is often
used in the middle of a season to determine if a team is performing above or below
expectations, and estimate their future standings.

I provided a theoretical justification for this formula and value of γ by modeling the
number of runs scored and allowed in baseball games as independent random variables
drawn from Weibull distributions with the same β and γ but different α; the probability
density is

f(x; α, β, γ) =

{
γ
α

((x− β)/α)γ−1 e−((x−β)/α)γ if x ≥ β

0 otherwise.

This model leads to a predicted won-loss percentage of (RS−β)γ

(RS−β)γ+(RA−β)γ ; here RS (resp.
RA) is the mean of the Weibull random variable corresponding to runs scored (allowed),
and RS− β (resp. RA− β) is an estimator of RSobs (resp. RAobs). An analysis of the
14 American League teams from the 2004 baseball season shows that (1) given that
the runs scored and allowed in a game cannot be equal, the runs scored and allowed
are statistically independent; (2) the best fit Weibull parameters attained from a least
squares analysis and the method of maximum likelihood give good fits. Specifically,
least squares yields a mean value of γ of 1.79 (with a standard deviation of .09) and
maximum likelihood yields a mean value of γ of 1.74 (with a standard deviation of
.06), which agree beautifully with the observed best value of 1.82 attained by fitting

RSobs
γ

RSobs
γ+RAobs

γ to the observed winning percentages.
The main calculation is as follows. We determine the mean of a Weibull distribution

with parameters (α, β, γ), and then use this to prove our main result, the Pythagorean
Formula. Let f(x; α, β, γ) be the probability density of a Weibull with parameters
(α, β, γ):

f(x; α, β, γ) =

{
γ
α

(
x−β

α

)γ−1
e−((x−β)/α)γ if x ≥ β

0 otherwise.
(4.4)

For s ∈ C with the real part of s greater than 0, recall the Γ-function (see [?]) is defined
by

Γ(s) =

∫ ∞

0

e−uus−1du =

∫ ∞

0

e−uus du

u
. (4.5)

Letting µα,β,γ denote the mean of f(x; α, β, γ), we have

µα,β,γ =

∫ ∞

β

x · γ

α

(
x− β

α

)γ−1

e−((x−β)/α)γ

dx

=

∫ ∞

β

α
x− β

α
· γ

α

(
x− β

α

)γ−1

e−((x−β)/α)γ

dx + β. (4.6)



RESEARCH PROJECTS 33

We change variables by setting u =
(

x−β
α

)γ
. Then du = γ

α

(
x−β

α

)γ−1
dx and we have

µα,β,γ =

∫ ∞

0

αuγ−1 · e−udu + β

= α

∫ ∞

0

e−uu1+γ−1 du

u
+ β

= αΓ(1 + γ−1) + β. (4.7)

A similar calculation determines the variance. We record these results:

Lemma 4.7. The mean µα,β,γ and variance σ2
α,β,γ of a Weibull with parameters (α, β, γ)

are

µα,β,γ = αΓ(1 + γ−1) + β

σ2
α,β,γ = α2Γ

(
1 + 2γ−1

)− α2Γ
(
1 + γ−1

)2
. (4.8)

We can now prove our main result:
Let X and Y be independent random variables with Weibull distributions (αRS, β, γ)

and (αRA, β, γ) respectively, where X is the number of runs scored and Y the number
of runs allowed per game. As the means are RS and RA, by Lemma 4.7 we have

RS = αRSΓ(1 + γ−1) + β

RA = αRAΓ(1 + γ−1) + β. (4.9)

Equivalently, we have

αRS =
RS− β

Γ(1 + γ−1)

αRA =
RA− β

Γ(1 + γ−1)
. (4.10)

We need only calculate the probability that X exceeds Y . Below we constantly use
the integral of a probability density is 1. We have

Prob(X > Y ) =

∫ ∞

x=β

∫ x

y=β

f(x; αRS, β, γ)f(y; αRA, β, γ)dy dx

=

∫ ∞

x=β

∫ x

y=β

γ

αRS

(
x− β

αRS

)γ−1

e−((x−β)/αRS)γ γ

αRA

(
y − β

αRA

)γ−1

e−((y−β)/αRA)γ

dy dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/αRS)γ

[∫ x

y=0

γ

αRA

(
y

αRA

)γ−1

e−(y/αRA)γ

dy

]
dx

=

∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/αRS)γ [
1− e−(x/αRA)γ]

dx

= 1−
∫ ∞

x=0

γ

αRS

(
x

αRS

)γ−1

e−(x/α)γ

dx, (4.11)

where we have set
1

αγ
=

1

αγ
RS

+
1

αγ
RA

=
αγ

RS + αγ
RA

αγ
RSα

γ
RA

. (4.12)
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Therefore

Prob(X > Y ) = 1− αγ

αγ
RS

∫ ∞

0

γ

α

(x

α

)γ−1

e(x/α)γ

dx

= 1− αγ

αγ
RS

= 1− 1

αγ
RS

αγ
RSα

γ
RA

αγ
RS + αγ

RA

=
αγ

RS

αγ
RS + αγ

RA

. (4.13)

Substituting the relations for αRS and αRA of (4.10) into (4.13) yields

Prob(X > Y ) =
(RS− β)γ

(RS− β)γ + (RA− β)γ
, (4.14)

Project 4.8. Obviously, I don’t feel that baseball players sit down and talk about how
to score and allow runs Weibullishly; I chose the three parameter Weibull distribution
as it is quite flexible and fits a variety of ‘one-hump’ distributions and all the needed
integrals can be done in closed form. This means we get a nice formula for the winning
percentage in terms of the parameters of the teams, and thus we can quickly predict how
much a team would improve by working on various parts. This is why explicit formulas
are so useful; it is trivial to do lots of numerical simulations, but difficult in general
to obtain a closed form. Can you find other distributions that lead to closed form
expressions? (The generalized Gamma should work for some values of its parameters.)

4.2.2. The log 5 Rule. Let p and q denote the winning percentages of teams A and B.
The following formula has numerically been observed to provide a terrific estimate of
the probability that A beats B: (p− pq)/(p + q − 2pq).

When we say A has a winning percentage of p, we mean that if A were to play an
average team many times, then A would win about p% of the games (for us, an average
team is one whose winning percentage is .500). Let us image a third team, say C, with a
.500 winning percentage. We image A and C playing as follows. We randomly choose
either 0 or 1 for each team; if one team has a higher number then they win, and if both
numbers are the same then we choose again (and continue indefinitely until one team
has a higher number than the other). For A we choose 1 with probability p and 0 with
probability 1− p, while for C we choose 1 and 0 with probability 1/2. It is easy to see
that this method yields A beating C exactly p% of the time.

The probability that A wins the first time we choose numbers is p · 1/2 (the only way
A wins is if we choose 1 for A and 0 for C, and the probability this happens is just
p · 1/2). If A were to win on the second iteration then we must have either chosen two
1’s initially (which happens with probability p ·1/2) or two 0’s initially (which happens
with probability (1 − p) · 1/2), and then we must choose 1 for A and 0 for B (which
happens with probability p · 1/2. Continuing this process, we see that the probability A
wins on the nth iteration is

(
p · 1

2
+ (1− p) · 1

2

)n−1

·
(

p · 1

2

)
=

p

2n
. (4.15)
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FIGURE 4. Probability tree for A beats B in one iteration.

Summing these probabilities gives a geometric series:

∞∑
n=1

p

2n
= p, (4.16)

proving the claim.
Imagine now that A and B are playing. We choose 1 for A with probability p and 0

with probability 1−p, while for B we choose 1 with probability q and 0 with probability
1−q. If in any iteration one of the teams has a higher number then the other, we declare
that team the winner; if not, we randomly choose numbers for the teams until one has a
higher number.

The probability A wins on the first iteration is p · (1 − q) (the probability that A
is 1 and B is 0). The probability that A neither wins or loses on the first iteration is
(1 − p)(1 − q) + pq = 1 − p − q + 2pq (the first factor is the probability we chose 0
twice, while the second is the probability we chose 1 twice). Thus the probability A
wins on the second iteration is just (1− p− q + 2pq) · p(1− q); see Figure 4.

Continuing this argument, the probability A wins on the nth iteration is just

(1− p− q + 2pq)n−1 · p(1− q). (4.17)
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Summing12 we find the probability A wins is just

∞∑
n=1

(1− p− q + 2pq)n−1 · p(1− q) = p(1− q)
∞∑

n=0

(1− p− q + 2pq)n

=
p(1− q)

1− (1− p− q + 2pq)

=
p(1− q)

p + q − 2pq
. (4.18)

It is illuminating to write the denominator as p(1−q)+q(1−p), and thus the formula
becomes

p(1− q)

p(1− q) + q(1− p)
. (4.19)

This variant makes the extreme cases more apparent. Further, there are only two ways
the process can terminate after one iteration: A wins (which happens with probability
p(1− q) or B wins (which happens with probability (1− p)q). Thus this formula is the
probability that A won given that the game was decided in just one iteration.

Project 4.9. Can you find other simple, elegant formulas to predict the probability one
team beats another? The more information one uses, the more accurate the formula
should be but the harder it will be to apply.

4.3. Die battles. Two players roll die with k sides, with each side equally likely of be-
ing rolled. Player one rolls m dice and player two rolls n dice. If player oneŠs highest
roll exceeds the highest roll of player two then player one wins, otherwise player two
wins. We can calculate the probability that player one wins, giving a concise summa-
tion and integral version, as well as estimating the probability that player one wins for
many triples (m,n, k). The answer involves numerous useful techniques (adding zero,
multiplying by one, telescoping series), as well as some beautiful formulas (formulas
for sums of powers, the binomial theorem, order statistics, partial summation).

Project 4.10. Read the paper on the webpage. This is the first of many problems one
can ask about player one and player two. Other natural questions are:

(1) For fixed k, what is the probability that player one wins as m and n tend to
infinity? Does it matter how they tend to infinity? For example, is the answer
different if m = n or m = n2?

(2) What is the probability that player oneŠs top two rolls exceed the top two rolls
of player two? Or, more generally, compare the largest c rolls of player one
and two. Such a calculation is useful in the board game RISK, where often the
attacker uses three die and the defender two die.

12To use the geometric series formula, we need to know that the ratio is less than 1 in absolute value.
Note 1−p− q +2pq = 1−p(1− q)− q(1−p). This is clearly less than 1 in absolute value (as long as p
and q are not 0 or 1). We thus just need to make sure it is greater than -1. But 1− p(1− q)− q(1− p) >
1− (1− q)− (1− p) = p + q − 1 > −1. Thus we may safely use the geometric series formula.
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4.4. Beyond the Pidgeonhole Principle. Everyone has experience with the Pidgeon-
hole Principle; what if we ask about having at least k pidgeons in a box when there are
N pidgeons?

Specifically, consider N boxes and m balls, with each ball equally likely to be in
each box. For fixed k, we can bound the probability of at least k balls being in the
same box, as N and m tend to infinity. In particular, we can show that if m = N

k−1
k

then this probability is at least 1
k!
− 1

2·k!2
+ O

(
N−1/k

)
and at most 1

k!
+ O

(
N−1/k

)
. We

investigated what happens when k grows with N and m, and showed there is negligible
probability of having at least N balls in the same box when m = N2−ε.

Project 4.11. The arguments in my notes were written a few years ago and in response
to a question asked by a colleague. I haven’t carefully gone through all my approxima-
tions, and almost surely some are wrong, but the general flavor should be right. One
should make these arguments rigorous and see how far they can be pushed.

4.5. Differentiating identities. Identities are the bread and butter of mathematics.
Thus, if there is a way to generate infinitely more identities from one, then this is a
technique one should study! For example, what is

∑∞
n=1 n2−n?

The starting point in the method of differentiating identities is some known identity,
for example, in this case the geometric series formula

∞∑
n=0

xn = (1− x)−1. (4.20)

A nice exercise is to show that we can interchange a derivative with respect to x with
the infinite sum. We apply the operator xd/dx to both sides (we use xd/dx and not
d/dx so that we end up with xn and not xn−1), and find

∞∑
n=0

nxn =
x

(1− x)2
. (4.21)

Taking x = 1/2 we see the answer to our original question is just 2.
This is but one of many formulas which can be proved using this technique (other

classic examples are means, variances and moments of probability distributions). Here
is another fun example.

Using Induction, it is possible to prove results such as

Theorem 4.12. For p a positive integer
n∑

k=1

kp = fp(n), (4.22)

where fp(x) is a polynomial of degree p + 1 in x with rational coefficients, and the
leading term is xp+1

p+1
.

Everyone is very familiar with the p = 1 case, and perhaps the p = 2 case. One way
to figure out the polynomial is to compute the answer for p or p+1 values of n and then
solve a system of equations. Other ways to prove these results are through Bernoulli
polynomials.
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It is also possible to prove these results without resorting to induction! Namely, we
can prove these results by differentiating identities. We need the following result about
finite geometric series:

Lemma 4.13. For any x ∈ R,

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
. (4.23)

Proof. If x = 1 we evaluate the right hand side by L’Hospital’s Rule, which gives
n+1

1
= n + 1. For other x, let S = 1 + x + · · ·+ xn. Then

S = 1 + x + x2 + · · ·+ xn

xS = x + x2 + · · ·+ xn + xn+1. (4.24)

Therefore

xS − S = xn+1 − 1 (4.25)

or

S =
xn+1 − 1

x− 1
. (4.26)

¤

We now show how to sum the pth powers of the first n integers. We first investigate
the case when p = 1. Consider the identity

n∑

k=0

xk =
xn+1 − 1

x− 1
. (4.27)

We apply the operator x d
dx

to each side and obtain

x
d

dx

n∑

k=0

xk = x
d

dx

xn+1 − 1

x− 1

n∑

k=0

kxk = x
(n + 1)xn · (x− 1)− 1 · (xn+1 − 1)

(x− 1)2

n∑

k=0

kxk = x
nxn+1 − (n + 1)xn + 1

(x− 1)2
. (4.28)

If we set x = 1, the left hand side becomes the sum of the first n integers. To evaluate
the right hand side we use L’Hospital’s rule, as when x = 1 we get 1 · 0

0
. As long as one

of the factors has a limit, the limit of a product is the product of the limits. As x → 1,
the factor of x becomes just 1 and we must study limx→1

nxn+1−(n+1)xn+1
(x−1)2

. We find

lim
x→1

nxn+1 − (n + 1)xn + 1

(x− 1)2
= lim

x→1

n(n + 1)xn − n(n + 1)xn−1

2(x− 1)
. (4.29)
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As the right hand side is 0
0

when x = 1 we apply L’Hospital again and find

lim
x→1

nxn+1 − (n + 1)xn + 1

(x− 1)2
= lim

x→1

n2(n + 1)xn−1 − n(n + 1)(n− 1)xn−1

2

=
n(n + 1)

2
. (4.30)

Therefore, by differentiating the finite geometric series and using L’Hospital’s rule
we were able to prove the formula for the sum of integers without resorting to induction.
The reason we used the operator x d

dx
and not d

dx
is this leaves the power of x unchanged.

While this flexibility is not needed to compute sums of first powers of integers, if we
want to calculate sums of kp for p > 1, this will simplify the formulas.

Theorem 4.14. For n a positive integer,
n∑

k=0

k2xk =
n(n + 1)(2n + 1)

6
. (4.31)

Proof. To find the sum of k2 we apply x d
dx

twice to (4.27) and get

x
d

dx

[
x

d

dx

n∑

k=0

xk

]
= x

d

dx

[
x

d

dx

xn+1 − 1

x− 1

]

x
d

dx

n∑

k=0

kxk = x
d

dx

[
x
nxn+1 − (n + 1)xn + 1

(x− 1)2

]

n∑

k=0

k2xk = x
d

dx

[
nxn+2 − (n + 1)xn+1 + x

(x− 1)2

]

n∑

k=0

k2xk = x
[n(n + 2)xn+1 − (n + 1)2xn + 1] · (x− 1)2

(x− 1)4

−x
[nxn+2 − (n + 1)xn+1 + x] · 2(x− 1)

(x− 1)4
. (4.32)

Simple algebra (multiply everything out on the right hand side and collect terms) yields
n∑

k=0

k2xk = x
n2xn+2 − (2n2 + 2n− 1)xn+1 + (n2 + 2n + 1)xn − x− 1

(x− 1)3
.(4.33)

The left hand side is the sum we want to evaluate; however, the right hand side is 0
0

for x = 1. As the denominator is (x− 1)3 it is reasonable to expect that we will need to
apply L’Hospital’s rule three times; we provide a proof of this in Remark 4.15.

Applying L’Hospital’s rule three times to the right hand side we find the right hand
side is

n2(n + 2)(n + 1)nxn−1 − (2n2 + 2n− 1)(n + 1)n(n− 1)xn−2 + (n2 + 2n + 1)n(n− 1)(n− 2)xn−3

3 · 2 · 1 .

(4.34)



40 STEVEN J. MILLER

Taking the limit as x → 1 we obtain
n∑

k=0

k2xk =
n2(n + 2)(n + 1)n− (2n2 + 2n− 1)(n + 1)n(n− 1) + (n2 + 2n + 1)n(n− 1)(n− 2)

6

=
n(n + 1)(2n + 1)

6
, (4.35)

where the last line follows from simple algebra. ¤
Remark 4.15. While we are able to obtain the correct formula for the sum of squares
without resorting to induction, the algebra is starting to become tedious, and will get
more so for sums of higher powers. After applying x d

dx
twice we had g(x)

(x−1)3
, where g(x)

is a polynomial of degree n + 2 and g(1) = 0. It is natural to suppose that we need to
apply L’Hospital’s rule three times as we have a factor of (x− 1)3 in the denominator.
However, if g′(1) or g′′(1) is not zero, then we do not apply L’Hospital’s rule three
times but rather only once or twice. Thus we really need to check and make sure that
g′(1) = g′′(1) = 0. While a straightforward calculation will show this, a moment’s
reflection shows us that both of these derivatives must vanish. If one of them was non-
zero, say equal to a, then we would have a

0
which is undefined; however, clearly the sum

of the first n squares is finite. Therefore these derivatives will be zero and we do have
to apply L’Hospital’s rule three times.

Remark 4.16. For those concerned about the legitimacy of applying L’Hospital’s rule
and these formulas when x = 1, we can consider a sequence of x’s, say xN = 1− 1

N
with

N →∞. Everything is then well-defined, and it is of course natural to use L’Hospital’s
rule to evaluate limN→∞

g(xN )
(xN−1)3

.

Project 4.17. Can you find a way to make the algebra work in general, or at least prove
that one does get a polynomial of the claimed degree?

REFERENCES

[AZ] M. Aigner and G. M. Ziegler, Proofs from THE BOOK, Springer-Verlag, Berlin, 1998.
[AB] U. Andrews IV and J. Blatz, Distribution of digits in the continued fraction representations of

seventh degree algebraic irrationals, Junior Thesis, Princeton University, Fall 2002.
[Ap] R. Apéry, Irrationalité de ζ(2) et ζ(3), Astérisque 61 (1979) 11–13.
[Apo] T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1998.
[Bec] M. Beceanu, Period of the continued fraction of

√
n, Junior Thesis, Princeton University,

2003.
[Br] T. Brox, Collatz cycles with few descents, Acta Arithm. 92 (2000), 181–188.
[Da1] H. Davenport, The Higher Arithmetic: An Introduction to the Theory of Numbers, 7th edition,

Cambridge University Press, Cambridge, 1999.
[Da2] H. Davenport, Multiplicative Number Theory, 2nd edition, revised by H. Montgomery, Grad-

uate Texts in Mathematics, Vol. 74, Springer-Verlag, New York, 1980.
[Da3] H. Davenport, On the distribution of quadratic residues (mod p), London Math. Soc. 6 (1931),

49–54.
[Da4] H. Davenport, On character sums in finite fields, Acta Math. 71 (1939), 99–121.
[Di] T. Dimofte, Rational shifts of linearly periodic continued fractions, Junior Thesis, Princeton

University, 2003.
[Gl] A. Gliga, On continued fractions of the square root of prime numbers, Junior Thesis, Princeton

University, 2003.



RESEARCH PROJECTS 41

[He] P. V. Hegarty, Some explicit constructions of sets with more sums than differences (2007), Acta
Arithmetica 130 (2007), no. 1, 61–77.

[HM] P. V. Hegarty and S. J. Miller, When almost all sets are difference dominated, to appear in
Random Structurs and Algorithms. http://arxiv.org/abs/0707.3417

[JKKKM] D. Jang, J. U. Kang, A. Kruckman, J. Kudo and S. J. Miller, Chains of distributions, hier-
archical Bayesian models and Benford’s Law, to appear in the Journal of Algebra, Number
Theory: Advances and Applications.

[JŁR] S. Janson, T. Łuczak and A. Ruciński, Random Graphs, Wiley, 2000.
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