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1. APPLICATIONS OF PROBABILITY: BENFORD’S LAW AND
HYPOTHESIS TESTING

The Gauss-Kuzmin Theorem (Theorem ??) tells us that the probability that the millionth digit
of a randomly chosen continued fraction expansion is k is approximately qk = log2

(
1 + 1

k(k+2)

)
.

What if we choose N algebraic numbers, say the cube roots of N consecutive primes: how often
do we expect to observe the millionth digit equal to k? If we believe that algebraic numbers other
than rationals and quadratic irrationals satisfy the Gauss-Kuzmin Theorem, we expect to observe
qkN digits equal to k, and probably fluctuations on the order of

√
N . If we observe M digits equal

to k, how confident are we (as a function of M and N , of course) that the digits are distributed
according to the Gauss-Kuzmin Theorem? This leads us to the subject of hypothesis testing: if we
assume some process has probability p of success, and we observe M successes in N trials, does
this provide support for or against the hypothesis that the probability of success is p?

We develop some of the theory of hypothesis testing by studying a concrete problem, the dis-
tribution of the first digit of certain sequences. In many problems (for example, 2n base 10), the
distribution of the first digit is given by Benford’s Law, described below. We first investigate situ-
ations where we can easily prove the sequences are Benford, and then discuss how to analyze data
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in harder cases where the proofs are not as clear (such as the famous 3x + 1 problem). The error
analysis is, of course, the same as the one we would use to investigate whether or not the digits
of the continued fraction expansions of algebraic numbers satisfy the Gauss-Kuzmin Theorem. In
the process of investigating Benford’s Law, we encounter equidistributed sequences (Chapter ??),
logarithmic probabilities (similar to the Gauss-Kuzmin probabilities in Chapter ??), and Poisson
Summation (Chapter ??), as well as many of the common problems in statistical testing (such as
non-independent events and multiple comparisons).

1.1. Benford’s Law. While looking through tables of logarithms in the late 1800s, Newcomb no-
ticed a surprising fact: certain pages were significantly more worn out than others. People were
looking up numbers whose logarithm started with 1 more frequently than other digits. In 1938 Ben-
ford [Ben] observed the same digit bias in a variety of phenomenon. See [Hi1, Rai] for a descrip-
tion and history, [Hi2, BBH, KonMi, LaSo, MN] for recent results, [Knu] for connections between
Benford’s law and rounding errors in computer calculations and [Nig1, Nig2] for applications of
Benford’s Law by the IRS to detect corporate tax fraud!

A sequence of positive numbers {xn} is Benford (base b) if the probability of observing the first
digit of xn in base b is j is logb

(
1 + 1

j

)
. More precisely,

lim
N→∞

#{n ≤ N : first digit of xn in base b is j}
N

= logb

(
1 +

1

j

)
. (1)

Note that j ∈ {1, . . . , b−1}. This is a probability distribution as one of the b−1 events must occur,
and the total probability is

b−1∑
j=1

logb

(
1 +

1

j

)
= logb

b−1∏
j=1

(
1 +

1

j

)
= logb

b−1∏
j=1

j + 1

j
= logb b = 1.

(2)

It is possible to be Benford to some bases but not others; we show the first digit of 2n is Benford
base 10, but clearly it is not Benford base 2 as the first digit is always 1. For many processes,
we obtain a sequence of points, and the distribution of the first digits are Benford. For example,
consider the 3x+1 problem. Let a0 be any positive integer, and consider the sequence where

an+1 =

{
3an + 1 if an is odd
an/2 if an is even.

(3)

For example, if a0 = 13, we have

13 −→ 40 −→ 20 −→ 10 −→ 5 −→ 16 −→ 8 −→ 4 −→ 2 −→ 1

−→ 4 −→ 2 −→ 1 −→ 4 −→ 2 −→ 1 · · · . (4)

An alternate definition is to remove as many powers of two as possible in one step. Thus

an+1 =
3an + 1

2k
, (5)

where k is the largest power of 2 dividing 3an + 1. It is conjectured that for any a0, eventually the
sequence becomes 4 → 2 → 1 → 4 · · · (or in the alternate definition 1 → 1 → 1 · · · ). While
this is known for all a0 ≤ 260, the problem has resisted numerous attempts at proofs (Kakutani has
described the problem as a conspiracy to slow down mathematical research because of all the time
spent on it). See [Lag1, Lag2] for excellent surveys of the problem. How do the first digits behave
for a0 large? Do numerical simulations support the claim that this process is Benford? Does it
matter which definition we use?



BENFORD’S LAW AND HYPOTHESIS TESTING 3

Exercise 1.1. Show the Benford probabilities log10

(
1 + 1

j

)
for j ∈ {1, . . . , 9} are irrational. What

if instead of base ten we work in base d for some integer d?

Exercise 1.2. Below we use the definition of the 3x + 1 map from (5). Show there are arbitrarily
large integers N such that if a0 = N then a1 = 1. Thus, infinitely often, one iteration is enough
to enter the repeating cycle. More generally, for each positive integer k does there exist arbitrarily
large integers N such that if a0 = N then aj > 1 for j < k and ak = 1?

1.2. Benford’s Law and Equidistributed Sequences. As we can write any positive x as bu for
some u, the following lemma shows that it suffices to investigate u mod 1:

Lemma 1.3. The first digits of bu and bv are the same in base b if and only if u ≡ v mod 1.

Proof. We prove one direction as the other is similar. If u ≡ v mod 1, we may write v = u + m,
m ∈ Z. If

bu = ukb
k + uk−1b

k−1 + · · ·+ u0 + u−1b
−1 + · · · , (6)

then

bv = bu+m

= bu · bm

= (ukb
k + uk−1b

k−1 + · · ·+ u0 + u−1b
−1 + · · · )bm

= ukb
k+m + · · ·+ u0b

m + u−1b
m−1 + · · · . (7)

Thus the first digits of each are uk, proving the claim. ¤
Exercise 1.4. Prove the other direction of the if and only if.

Consider the unit interval [0, 1). For j ∈ {1, . . . , b}, define pj by

bpj = j or equivalently pj = logb j. (8)

For j ∈ {1, . . . , b− 1}, let
I

(b)
j = [pj, pj+1) ⊂ [0, 1). (9)

Lemma 1.5. The first digit of by base b is j if and only if y mod 1 ∈ I
(b)
j .

Proof. By Lemma 1.3 we may assume y ∈ [0, 1). Then y ∈ I
(b)
j = [pj, pj+1) if and only if

bpj ≤ y < bpj+1 , which from the definition of pj is equivalent to j ≤ by < j + 1, proving the
claim. ¤

The following theorem shows that the exponentials of equidistributed sequences (see Definition
??) are Benford.

Theorem 1.6. If yn = logb xn is equidistributed mod 1 then xn is Benford (base b).

Proof. By Lemma 1.5,

{n ≤ N : yn mod 1 ∈ [logb j, logb(j + 1))}
= {n ≤ N : first digit of xn in base b is j} . (10)

Therefore

lim
N→∞

# {n ≤ N : yn mod 1 ∈ [logb j, logb(j + 1))}
N

= lim
N→∞

# {n ≤ N : first digit of xn in base b is j}
N

. (11)

If yn is equidistributed, then the left side of (11) is logb

(
1 + 1

j

)
which implies xn is Benford base

b. ¤
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Remark 1.7. One can extend the definition of Benford’s Law from statements concerning the dis-
tribution of the first digit to the distribution of the first k digits. With such an extension, Theorem
1.6 becomes yn = logb xn mod 1 is equidistributed if and only if xn is Benford base b. See [KonMi]
for details.

Let {x} = x − [x] denote the fractional part of x, where [x] as always is the greatest integer
at most x. In Theorem ?? we prove that for α 6∈ Q the fractional parts of nα are equidistributed
modulo 1. From this and Theorem 1.6, it immediately follows that geometric series are Benford
(modulo the irrationality condition):

Theorem 1.8. Let xn = arn with logb r 6∈ Q. Then xn is Benford (base b).

Proof. Let yn = logb xn = n logb r + logb a. As logb r 6∈ Q, by Theorem ?? the fractional parts
of yn are equidistributed. Exponentiating by b, we obtain that xn is Benford (base b) by Theorem
1.6. ¤

Theorem 1.8 implies that 2n is Benford base 10, but not surprisingly that it is not Benford base 2.

Exercise 1.9. Do the first digits of en follow Benford’s Law? What about en + e−n?

1.3. Recurrence Relations and Benford’s Law. We show many sequences defined by recurrence
relations are Benford. For more on recurrence relations, see Exercise ??. The interested reader
should see [BrDu, NS] for more on the subject.

1.3.1. Recurrence Preliminaries. We consider recurrence relations of length k:

an+k = c1an+k−1 + · · ·+ ckan, (12)

where c1, . . . , ck are fixed real numbers. If the characteristic polynomial

rk − c1r
k−1 − c2r

k−2 − · · · − ck−1r − ck = 0 (13)

has k distinct roots λ1, . . . , λk, there exist k numbers u1, . . . , uk such that

an = u1λ
n
1 + · · ·+ ukλ

n
k , (14)

where we have ordered the roots so that |λ1| ≥ · · · ≥ |λk|.
For the Fibonacci numbers k = 2, c1 = c2 = 1, u1 = −u2 = 1√

5
, and λ1 = 1+

√
5

2
, λ2 = 1−√5

2

(see Exercise ??). If |λ1| = 1, we do not expect the first digit of an to be Benford (base b). For
example, if we consider

an = 2an−1 − an−2 (15)
with initial values a0 = a1 = 1, every an = 1! If we instead take a0 = 0, a1 = 1, we get an = n.
See [Kos] for many interesting occurrences of Fibonacci numbers and recurrence relations.

1.3.2. Recurrence Relations Are Benford.

Theorem 1.10. Let an satisfy a recurrence relation of length k with k distinct real roots. Assume
|λ1| 6= 1 with |λ1| the largest absolute value of the roots. Further, assume the initial conditions are
such that the coefficient of λ1 is non-zero. If logb |λ1| 6∈ Q, then an is Benford (base b).

Proof. By assumption, u1 6= 0. For simplicity we assume λ1 > 0, λ1 > |λ2| and u1 > 0. Again let
yn = logb xn. By Theorem 1.6 it suffices to show yn is equidistributed mod 1. We have

xn = u1λ
n
1 + · · ·+ unλ

n
k

xn = u1λ
n
1

[
1 + O

(
kuλn

2

λn
1

)]
, (16)

where u = maxi |ui| + 1 (so ku > 1 and the big-Oh constant is 1). As λ1 > |λ2|, we “borrow”
some of the growth from λn

1 ; this is a very useful technique. Choose a small ε and an n0 such that
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(1) |λ2| < λ1−ε
1 ;

(2) for all n > n0, (ku)1/n

λε
1

< 1, which then implies ku
λnε
1

=
(

(ku)1/n

λε
1

)n

.

As ku > 1, (ku)1/n is decreasing to 1 as n tends to infinity. Note ε > 0 if λ1 > 1 and ε < 0 if
λ1 < 1. Letting

β =
(ku)1/n0

λε
1

|λ2|
λ1−ε

1

< 1, (17)

we find that the error term above is bounded by βn for n > n0, which tends to 0. Therefore

yn = logb xn

= logb(u1λ
n
1 ) + O (logb(1 + βn))

= n logb λ1 + logb u1 + O(βn), (18)

where the big-Oh constant is bounded by C say. As logb λ1 6∈ Q, the fractional parts of n logb λ1 are
equidistributed modulo 1, and hence so are the shifts obtained by adding the fixed constant logb u1.

We need only show that the error term O(βn) is negligible. It is possible for the error term to
change the first digit; for example, if we had 999999 (or 1000000), then if the error term contributes
2 (or −2), we would change the first digit base 10. However, for n sufficiently large, the error term
will change a vanishingly small number of first digits. Say n logb λ1 + logb u1 exponentiates base b
to first digit j, j ∈ {1, . . . , b− 1}. This means

n logb λ1 + logb u1 ∈ I
(b)
j = [pj−1, pj). (19)

The error term is at most Cβn and yn exponentiates to a different first digit than n logb λ1 + logb u1

only if one of the following holds:
(1) n logb λ1 + logb u1 is within Cβn of pj , and adding the error term pushes us to or past pj;
(2) n logb λ1 + logb u1 is within Cβn of pj−1, and adding the error term pushes us before pj−1.

The first set is contained in [pj−Cβn, pj), of length Cβn. The second is contained in [pj−1, pj−1+
Cβn), also of length Cβn. Thus the length of the interval where n logb λ1 + logb u1 and yn could
exponentiate base b to different first digits is of size 2Cβn. If we choose N sufficiently large then
for all n > N we can make these lengths arbitrarily small. As n logb λ1 + logb u1 is equidistributed
modulo 1, we can control the size of the subsets of [0, 1) where n logb λ1 + logb u1 and yn disagree.
The Benford behavior (base b) of xn now follows in the limit. ¤
Exercise 1.11. Weaken the conditions of Theorem 1.10 as much as possible. What if several roots
equal λ1? What does a general solution to (12) look like now? What if λ1 is negative? Can anything
be said if there are complex roots?

Exercise(hr) 1.12. Consider the recurrence relation an+1 = 5an − 8an−1 + 4an−2. Show there
is a choice of initial conditions such that the coefficient of λ1 (a largest root of the characteristic
polynomial) is non-zero but the sequence does not satisfy Benford’s Law.

Exercise(hr) 1.13. Assume all the roots of the characteristic polynomial are distinct, and let λ1 be
the largest root in absolute value. Show for almost all initial conditions that the coefficient of λ1 is
non-zero, which implies that our assumption that u1 6= 0 is true most of the time.

1.4. Random Walks and Benford’s Law. Consider the following (colorful) problem: A drunk
starts off at time zero at a lamppost. Each minute he stumbles with probability p one unit to the
right and with probability q = 1− p one unit to the left. Where do we expect the drunk to be after
N tosses? This is known as a Random Walk. By the Central Limit Theorem (Theorem ??), his
distribution after N tosses is well approximated by a Gaussian with mean 1·pN +(−1)·(1−p)N =
(2p− 1)N and variance p(1− p)N . For more details on Random Walks, see [Re].

For us, a Geometric Brownian Motion is a process such that its logarithm is a Random Walk (see
[Hu] for complete statements and applications). We show below that the first digits of Geometric
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Brownian Motions are Benford. In [KonSi] the 3x + 1 problem is shown to be an example of
Geometric Brownian Motion. For heuristic purposes we use the first definition of the 3x + 1 map,
though the proof is for the alternate definition. We have two operators: T3 and T2, with T3(x) =
3x + 1 and T2(x) = x

2
. If an is odd, 3an + 1 is even, so T3 must always be followed by T2. Thus,

we have really have two operators T2 and T3/2, with T3/2(x) = 3x+1
2

. If we assume each operator is
equally likely, half the time we go from x → 3

2
x + 1, and half the time to 1

2
x.

If we take logarithms, log x goes to log 3
2
x = log x+log 3

2
half the time and log 1

2
x = log x+log 1

2

the other half. Hence on average we send log x → log x + 1
2
log 3

4
. As log 3

4
< 0, on average our

sequence is decreasing (which agrees with the conjecture that eventually we reach 4 → 2 → 1).
Thus we might expect our sequence to look like log xk = log x+ k

2
log 3

4
. As log 3

4
6∈ Q, its multiples

are equidistributed modulo 1, and thus when we exponentiate we expect to see Benford behavior.
Note, of course, that this is simply a heuristic, suggesting we might see Benford’s Law. A better
heuristic is sketched in Exercise 1.14.

While we can consider Random Walks or Brownian Motion with non-zero means, for simplicity
below we assume the means are zero. Thus, in the example above, p = 1

2
.

Exercise(hr) 1.14. Give a better heuristic for the Geometric Brownian Motion of the 3x + 1 map
by considering the alternate definition: an+1 = 3an+1

2k , where 2k||3x + 1. In particular, calculate
the expected value of log an+1. To do so, we need to estimate the probability k = ` for each
` ∈ {1, 2, 3, . . . }; note k 6= 0 as for x odd, 3x + 1 is always even and thus divisible by at least one
power of 2. Show it is reasonable to assume that Prob(k = `) = 2−`.

1.4.1. Needed Gaussian Integral. Consider a sequence of Gaussians Gσ with mean 0 and variance
σ2, with σ2 → ∞. The following lemma shows that for any δ > 0 as σ → ∞ almost all of the
probability is in the interval [−σ1+δ, σ1+δ]. We will use this lemma to show that it is enough to
investigate Gaussians in the range [−σ1+δ, σ1+δ].

Lemma 1.15.
2√

2πσ2

∫ ∞

σ1+δ

e−x2/2σ2

dx ¿ e−σ2δ/2. (20)

Proof. Change the variable of integration to w = x
σ
√

2
. Denoting the above integral by I , we find

I =
2√

2πσ2

∫ ∞

σδ/
√

2

e−w2 · σ
√

2dw =
2√
π

∫ ∞

σδ/
√

2

e−w2

dw. (21)

The integrand is monotonically decreasing. For w ∈
[

σδ√
2
, σδ√

2
+ 1

]
, the integrand is bounded by

substituting in the left endpoint, and the region of integration is of length 1. Thus,

I < 1 · 2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2
+1

e−w2

dw

=
2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2

e−(u+1)2du

=
2√
π

e−σ2δ/2 +
2√
π

∫ ∞

σδ√
2

e−u2

e−2ue−1du

<
2√
π

e−σ2δ/2 +
2

e
√

π
e−σ2δ/2

∫ ∞

σδ√
2

e−2udu

<
2(e + 1)√

π
e−σ2δ/2

< 4e−σ2δ/2. (22)
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¤

Exercise 1.16. Prove a similar result for intervals of the form [−σg(σ), σg(σ)] where g(σ) is a
positive increasing function and limσ→∞ g(σ) = +∞.

1.4.2. Geometric Brownian Motions Are Benford. We investigate the distribution of digits of pro-
cesses that are Geometric Brownian Motions. By Theorem 1.6 it suffices to show that the Geometric
Brownian Motion converges to being equidistributed modulo 1. Explicitly, we have the following:
after N iterations, by the Central Limit Theorem the expected value converges to a Gaussian with
mean 0 and variance proportional to

√
N . We must show that the Gaussian with growing variance

is equidistributed modulo 1.
For convenience we assume the mean is 0 and the variance is N/2π. This corresponds to a fair

coin where for each head (resp., tail) we move 1√
4π

units to the right (resp., left). By the Central
Limit Theorem the probability of being x units to the right of the origin after N tosses is asymptotic
to

pN(x) =
e−πx2/N

√
N

. (23)

For ease of exposition, we assume that rather than being asymptotic to a Gaussian, the distribution
is a Gaussian. For our example of flipping a coin, this cannot be true. If every minute we flip a coin
and record the outcome, after N minutes there are 2N possible outcomes, a finite number. To each
of these we attach a number equal to the excess of heads to tails. There are technical difficulties
in working with discrete probability distributions; thus we study instead continuous processes such
that at time N the probability of observing x is given by a Gaussian with mean 0 and variance
N/2π. For complete details see [KonMi].

Theorem 1.17. As N →∞, pN(x) = e−πx2/N√
N

becomes equidistributed modulo 1.

Proof. For each N we calculate the probability that for x ∈ R, x mod 1 ∈ [a, b] ⊂ [0, 1). This is
∫ ∞

x=−∞
x mod 1∈[a,b]

pN(x)dx =
1√
N

∑

n∈Z

∫ b

x=a

e−π(x+n)2/Ndx. (24)

We need to show the above converges to b− a as N →∞. For x ∈ [a, b], standard calculus (Taylor
series expansions, see §??) gives

e−π(x+n)2/N = e−πn2/N + O

(
max(1, |n|)

N
e−n2/N

)
. (25)

We claim that in (24) it is sufficient to restrict the summation to |n| ≤ N5/4. The proof is
immediate from Lemma 1.15: we increase the integration by expanding to x ∈ [0, 1], and then
trivially estimate. Thus, up to negligible terms, all the contribution is from |n| ≤ N5/4.

In §?? we prove the Poisson Summation formula, which in this case yields

1√
N

∑

n∈Z
e−πn2/N =

∑

n∈Z
e−πn2N . (26)

The beauty of Poisson Summation is that it converts one infinite sum with slow decay to another
sum with rapid decay; because of this, Poisson Summation is an extremely useful technique for a
variety of problems. The exponential terms on the left of (26) are all of size 1 for n ≤ √

N , and
do not become small until n À √

N (for instance, once n >
√

N log N , the exponential terms are
small for large N ); however, almost all of the contribution on the right comes from n = 0. The
power of Poisson Summation is it often allows us to approximate well long sums with short sums.
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We therefore have

1√
N

∑

|n|≤N5/4

∫ b

x=a

e−π(x+n)2/Ndx

=
1√
N

∑

|n|≤N5/4

∫ b

x=a

[
e−πn2/N + O

(
max(1, |n|)

N
e−n2/N

)]
dx

=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O


 1

N

N5/4∑
n=0

n + 1√
N

e−π(n/
√

N)2




=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O

(
1

N

∫ N3/4

w=0

(w + 1)e−πw2√
Ndw

)

=
b− a√

N

∑

|n|≤N5/4

e−πn2/N + O
(
N−1/2

)
. (27)

By Lemma 1.15 we can extend all sums to n ∈ Z in (27) with negligible error. We now apply
Poisson Summation and find that up to lower order terms,

1√
N

∑

n∈Z

∫ b

x=a

e−π(x+n)2/Ndx ≈ (b− a) ·
∑

n∈Z
e−πn2N . (28)

For n = 0 the right hand side of (28) is b− a. For all other n, we trivially estimate the sum:

∑

n6=0

e−πn2N ≤ 2
∑
n≥1

e−πnN ≤ 2e−πN

1− e−πN
, (29)

which is less than 4e−πN for N sufficiently large. ¤

We can interpret the above arguments as follows: for each N , consider a Gaussian pN(x) with
mean 0 and variance N/2π. As N →∞ for each x (which occurs with probability pN(x)) the first
digit of 10x converges to the Benford base 10 probabilities.

Remark 1.18. The above framework is very general and applicable to a variety of problems. In
[KonMi] it is shown that these arguments can be used to prove Benford behavior in discrete systems
such as the 3x+1 problem as well as continuous systems such as the absolute values of the Riemann
zeta function (and any “good” L-function) near the critical line! For these number theory results,
the crucial ingredients are Selberg’s result (near the critical line, log |ζ(s + it)| for t ∈ [T, 2T ]
converges to a Gaussian with variance tending to infinity in T ) and estimates by Hejhal on the rate
of convergence. For the 3x + 1 problem the key ingredients are the structure theorem (see [KonSi])
and the approximation exponent of Definition ??; see [LaSo] for additional results on Benford
behavior of the 3x + 1 problem.

1.5. Statistical Inference. Often we have reason to believe that some process occurs with proba-
bility p of success and q = 1 − p of failure. For example, consider the 3x + 1 problem. Choose
a large a0 and look at the first digit of the an’s. There is reason to believe the distribution of the
first digits is given by Benford’s Law for most a0 as a0 → ∞. We describe how to test this and
similar hypotheses. We content ourselves with describing one simple test; the interested reader
should consult a statistics textbook (for example, [BD, CaBe, LF, MoMc]) for the general theory
and additional applications.
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1.5.1. Null and Alternative Hypotheses. Suppose we think some population has a parameter with
a certain value. If the population is small, it is possible to investigate every element; in general this
is not possible.

For example, say the parameter is how often the millionth decimal or continued fraction digit is 1
in two populations: all rational numbers in [0, 1) with denominator at most 5, and all real numbers
in [0, 1). In the first, there are only 10 numbers, and it is easy to check them all. In the second,
as there are infinitely many numbers, it is impossible to numerically investigate each. What we do
in practice is we sample a large number of elements (say N elements) in [0, 1), and calculate the
average value of the parameter for this sample.

We thus have two populations, the underlying population (in the second case, all numbers in
[0, 1)), and the sample population (in this case, the N sampled elements).

Our goal is to test whether or not the underlying population’s parameter has a given value, say p.
To this end, we want to compare the sample population’s value to p. The null hypothesis, denoted
H0, is the claim that there is no difference between the sample population’s value and the underlying
population’s value; the alternative hypothesis, denoted Ha, is the claim that there is a difference
between the sample population’s value and the underlying population’s value.

When we analyze the data from the sample population, either we reject the null hypothesis, or we
fail to reject the null hypothesis. It is important to note that we never prove the null or alternative
hypothesis is true or false. We are always rejecting or failing to reject the null hypothesis, we are
never accepting it. If we flip a coin 100 times and observe all heads, this does not mean the coin
is not fair: it is possible the coin is fair but we had a very unusual sample (though, of course, it is
extremely unlikely).

We now discuss how to test the null hypothesis. Our main tool is the Central Limit Theorem.
This is just one of many possible inference tests; we refer the reader to [BD, CaBe, LF, MoMc] for
more details.

1.5.2. Bernoulli Trials and the Central Limit Theorem. Assume we have some process where we
expect a probability p of observing a given value. For example, if we choose numbers uniformly in
[0, 1) and look at the millionth decimal digit, we believe that the probability this digit is 1 is 1

10
. If

we look at the continued fraction expansion, by Theorem ?? the probability that the millionth digit
is 1 is approximately log2

4
3
. What if we restrict to algebraic numbers? What is the probability the

millionth digit (decimal or continued fraction expansion) equals 1?
In general, once we formalize our conjecture we test it by choosing N elements from the pop-

ulation independently at random (see §??). Consider the claim that a process has probability p of
success. We have N independent Bernoulli trials (see §??). The null hypothesis is the claim that
p percent of the sample are a success. Let SN be the number of successes; if the null hypothesis
is correct, by the Central Limit Theorem (see §??) we expect SN to have a Gaussian distribution
with mean pN and variance pqN (see Exercise ?? for the calculations of the mean and variance of a
Bernoulli process). This means that if we were to look at many samples with N elements, on aver-
age each sample would have pN ±O(

√
pqN) successes. We calculate the probability of observing

a difference |SN − pN | as large or larger than a. This is given by the area under the Gaussian with
mean pN and variance pqN :

1√
2πpqN

∫

|s−pN |≥a

e−(s−pN)2/2pqNds. (30)

If this integral is small, it is extremely unlikely that we choose N independent trials from a process
with probability p of success and we reject the null hypothesis; if the integral is large, we do not
reject the null hypothesis, and we have support for our claim that the underlying process does have
probability p of success.
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Unfortunately, the Gaussian is a difficult function to integrate, and we would need to tabulate
these integrals for every different pair of mean and variance. It is easier, therefore, to renormalize
and look at a new statistic which should also be Gaussian, but with mean 0 and variance 1. The
advantage is that we need only tabulate one special Gaussian, the standard normal.

Let Z = SN−pN√
pqN

. This is known as the z-statistic. If SN ’s distribution is a Gaussian with mean
pN and variance pqN , note Z will be a Gaussian with mean 0 and variance 1.

Exercise 1.19. Prove the above statement about the distribution of z.

Let

I(a) =
1√
2π

∫

|z|≥a

e−z2/2dz, (31)

the area under the standard normal (mean 0, standard deviation 1) that is at least a units from the
mean. We consider different confidence intervals. If we were to randomly choose a number z
from such a Gaussian, what is the probability (as a function of a) that z is at most a units from
the mean? Approximately 68% of the time |z| ≤ 1 (I(1) ≈ .32), approximately 95% of the time
z ≤ 1.96 (I(1.96) ≈ .05), and approximately 99% of the time |z| ≤ 2.57 (I(2.57) = .01). In
other words, there is only about a 1% probability of observing |z| ≥ 2.57. If |z| ≥ 2.57, we have
strong evidence against the hypothesis that the process occurs with probability p, and we would be
reasonably confident in rejecting the null hypothesis; of course, it is possible we were unlucky and
obtained an unrepresentative set of data (but it is extremely unlikely that this occurred; in fact, the
probability is at most 1%).

Remark 1.20. For a Gaussian with mean µ and standard deviation σ, the probability that |X−µ| ≤
σ is approximately .68. Thus if X is drawn from a normal with mean µ and standard deviation σ,
then approximately 68% of the time µ ∈ [x−σ, x+σ] (where x is the observed value of the random
variable X).

To test the claim that some process occurs with probability p, we observe N independent trials,
calculate the z-statistic, and see how likely it is to observe |Z| that large or larger. We give two
examples below.

1.5.3. Digits of the 3x+1 Problem. Consider again the 3x+1 problem. Choose a large integer a0,
and look at the iterates: a1, a2, a3, . . . . We study how often the first digit of terms in the sequence
equal d ∈ {1, . . . , 9}. We can regard the first digit of a term as a Bernoulli trial with a success
(or 1) if the first digit is d and a failure (or 0) otherwise. If the distribution of digits is governed
by Benford’s Law, the theoretical prediction is that the fraction of the first digits that equal d is
p = log10(

d+1
d

). Assume there are N terms in our sequence (before we hit the pattern 4 → 2 →
1 → 4 · · · ), and say M of them have first digit d. For what M does this experiment provide support
that the digits follow Benford’s Law?

Exercise 1.21. The terms in the sequence generated by a0 are not independent, as an+1 is deter-
mined by an. Show that if the first digit of an is 2 then the first digit of an+1 cannot be a 2.

The above exercise shows that the first digit of the terms cannot be considered independent
Bernoulli trials. As the sequence is completely determined by the first term, this is not surprising.
If we look at an enormous number of terms, however, these effects “should” average out. Another
possible experiment is to look at the first digit of the millionth term for N different a0’s.

Let a0 = 333 . . . 333 be the integer that is 10,000 threes. There are 177,857 terms in the sequence
before we hit 4 → 2 → 1. The following data comparing the number of first digits equal to d to the
Benford predictions are from [Min]:
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digit observed predicted variance z-statistic I(z)
1 53425 53540 193.45 −0.596 0.45
2 31256 31310 160.64 −0.393 0.31
3 22257 22220 139.45 0.257 0.21
4 17294 17230 124.76 0.464 0.36
5 14187 14080 113.88 0.914 0.63
6 11957 11900 105.40 0.475 0.36
7 10267 10310 98.57 −0.480 0.37
8 9117 9090 92.91 0.206 0.16
9 8097 8130 88.12 −0.469 0.36

As the values of the z-statistics are all small (well below 1.96 and 2.57), the above table provides
evidence that the first digits in the 3x + 1 problem follow Benford’s Law, and we would not reject
the null hypothesis for any of the digits. If we had obtained large z-statistics, say 4, we would reject
the null hypothesis and doubt that the distribution of digits follow Benford’s Law.

Remark 1.22 (Important). One must be very careful when analyzing all the digits. Once we know
how many digits are in {1, . . . , 8}, then the number of 9’s is forced: these are not nine independent
tests, and a different statistical test (a chi-square test with eight degrees of freedom) should be
done. Our point here is not to write a treatise on statistical inference, but merely highlight some of
the tools and concepts. See [BD, CaBe, LF, MoMc] for more details, and [Mil5] for an amusing
analysis of a baseball problem involving chi-square tests.

Additionally, if we have many different experiments, then “unlikely” events should happen. For
example, if we have 100 different experiments we would not be surprised to see an outcome which
only has a 1% chance of occurring (see Exercise 1.23). Thus, if there are many experiments, the
confidence intervals need to be adjusted. One common method is the Bonferroni adjustment method
for multiple comparisons. See [BD, MoMc].

Exercise 1.23. Assume for each trial there is a 95% chance of observing the fraction of first digits
equal to 1 is in [log10 2−1.96σ, log10 2+1.96σ] (for some σ). If we have 10 independent trials, what
is the probability that all the observed percentages are in this interval? If we have 14 independent
trials?

Remark 1.24. How does one calculate with 10, 000 digit numbers? Such large numbers are greater
than the standard number classes (int, long, double) of many computer programming languages.
The solution is to represent numbers as arrays. To go from an to 3an + 1, we multiply the array by
3, carrying as needed, and then add 1; we leave space-holding zeros at the start of the array. For
example,

3 · [0, . . . , 0, 0, 5, 6, 7] = [0, . . . , 0, 1, 7, 0, 1]. (32)

We need only do simple operations on the array. For example, 3 · 7 = 21, so the first entry of the
product array is 1 and we carry the 2 for the next multiplication. We must also compute an/2 if an

is even. Note this is the same as 5an divided by 10. The advantage of this approach is that it is easy
to calculate 5an, and as an is even, the last digit of 5an is zero, hence array division by 10 is trivial.

Exercise 1.25. Consider the first digits of the 3x + 1 problem (defined as in (3)) in base 6. Choose
a large integer a0, and look at the iterates a1, a2, a3, . . . . As a0 → ∞, is the distribution of digits
Benford base 6?

Exercise 1.26 (Recommended). Here is another variant of the 3x + 1 problem:

an+1 =

{
3an + 1 if an is odd
an/2k if an is even and 2k||an;

(33)
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2k||an means 2k divides an, but 2k+1 does not. Consider the distribution of first digits of this
sequence for various a0. What is the null hypothesis? Do the data support the null hypothesis, or
the alternative hypothesis? Do you think these numbers also satisfy Benford’s Law? What if instead
we define

an+1 =
3an + 1

2k
, 2k||an. (34)

1.5.4. Digits of Continued Fractions. Let us test the hypothesis that the digits of algebraic numbers
are given by the Gauss-Kuzmin Theorem (Theorem ??). Let us look at how often the 1000th digit
equals 1. By the Gauss-Kuzmin Theorem this should be approximately log2

4
3
. Let pn be the nth

prime. In the continued fraction expansions of 3
√

pn for n ∈ {100000, 199999}, exactly 41565 have
the 1000th digit equal to 1. Assuming we have a Bernoulli process with probability of success (a
digit of 1) of p = log2

4
3
, the z-statistic is .393. As the z-statistic is small (95% of the time we

expect to observe |z| ≤ 1.96), we do not reject the null hypothesis, and we have obtained evidence
supporting the claim that the probability that the 1000th digit is 1 is given by the Gauss-Kuzmin
Theorem. See Chapter ?? for more detailed experiments on algebraic numbers and the Gauss-
Kuzmin Theorem.

1.6. Summary. We have chosen to motivate our presentation of statistical inference by investigat-
ing the first digits of the 3x + 1 problem, but of course the methods apply to a variety of prob-
lems. Our main tool is the Central Limit Theorem: if we have a process with probability p (resp.,
q = 1 − p) of success (resp., failure), then in N independent trials we expect about pN successes,
with fluctuations of size

√
pqN . To test whether or not the underlying probability is p we formed

the z-statistic: SN−pN√
pqN

, where SN is the number of successes observed in the N trials.
If the process really does have probability p of success, then by the Central Limit Theorem the

distribution of SN is approximately a Gaussian with mean pN and standard deviation
√

pqN , and
we then expect the z-statistic to be of size 1. If, however, the underlying process occurs not with
probability p but p′, then we expect SN to be approximately a Gaussian with mean p′N and standard
deviation

√
p′q′N . We now expect the z-statistic to be of size (p′−p)N√

p′q′N . This is of size
√

N , much
larger than 1.

We see the z-statistic is very sensitive to p′ − p: if p′ is differs from p, for large N we quickly
observe large values of z. Note, of course, that statistical tests can only provide compelling evidence
in favor or against a hypothesis, never a proof.
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