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Chapter 1

Enigma and Ultra

This chapter’s about the Enigma, one of the most famous cryptographic
systems ever. The Germans used it during World War II, and believed it
provided them with perfect security in their communications. We’ll start
with a quick review of its history, then move on to some of the mathematics
needed to study it. The analysis illustrates a common theme in cryptogra-
phy: frequently it only takes elementary mathematics to state or describe a
problem, but solving it is another story entirely! Essentially all we need in
this chapter is elementary combinatorics, at the level of counting how many
ways there are to choose a fixed number of people from a larger group (with
and without the order of choice mattering).

As the Enigma was in fact broken, it’s natural to ask what went wrong,
or, from the point of view of the Allies, what went right! The German
cryptographers weren’t fools. Using these counting arguments, we’ll see why
they thought there was no chance of the Allies reading their messages, and
then see how little mistakes in implementation gave the Allies the needed
opening into its secret.

1.1. Setting the stage

The movie Patton is about, not surprisingly, the life of General George
S. Patton. One of the earliest scenes is General Patton arriving in Africa
shortly after Operation Torch, the Allied landings in Africa in November
1942. The U.S. forces have just been routed by the Germans, and Pat-
ton takes charge. Shortly thereafter, his units engage and soundly defeat
elements of German Field Marshall Rommel’s army. In one of the most
memorable scenes of the movie, Patton surveys the victory and exclaims:
“Rommel, you magnificent bastard, I READ YOUR BOOK!”

Rommel had written a book on tank strategies, Infanterie Greift An
(Infantry Attacks), which was published a few years before the war in 1937;
however, it is rare to have such insights into your foe. As you would expect,
there is a huge advantage if your enemy is kind enough to describe their
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2 1. ENIGMA AND ULTRA

methods, preferences, targets and strategy to you. Thus, most of the time,
each side goes to great lengths to keep these secret; however, different units
must be able to communicate quickly and securely with each other. In the
midst of a battle, commanders need to redeploy their forces, either to attack
or to reinforce weakened positions. They can’t wait hours for a message
to be encrypted, transmitted and decoded – these must be done almost
instantly, or the information is useless. A vulnerability may exist for only
a few minutes, and you have to act fast. At the same time, you don’t want
the enemy to decode your orders and change their plans.

For centuries, cryptographers had been working on this problem, trying
to devise a way to let select people exchange information quickly without
others unraveling the message. In the Enigma, the Germans believed they
had found a practical and essentially impenetrable solution.

The Enigma was a machine used by the Germans in World War II, and
before, to encrypt and decrypt messages. As we’ll see when we read about
all the different wirings and rotors and parts (see Figure 1 for an illustra-
tion), it’s a very complicated contraption with an incredibly large number of
possibilities that need to be tried to successfully decrypt a message. Because
the number of possibilities were so large (over 10100 as we’ll see below!), the
Germans were very confident that they had a secure means to communicate,
and sent many important messages via the Enigma. Fortunately for the Al-
lies, the Germans made several mistakes in using the Enigma, and these
errors were exploitable and led to a significant decrease in security. The
Allied efforts to decrypt the German Enigma traffic are known as Ultra.

How valuable were these decryptions? Estimates range from shortening
World War II by two years to preventing a German victory. The Allies were
able to use the decoded messages for a variety of purposes, ranging from
determining Germany’s long term strategic goals to dealing with more im-
mediate threats such as the location of German subs hunting Allied convoys.

The Germans placed absolute confidence in the security of the Enigma.
As one German cryptographer stated, “From a mathematical standpoint we
cannot speak of a theoretically absolute solvability of a cryptogram, but...
the solvability is so far removed from practical possibility that the cipher
system of the machine, when the distribution of keys is correctly handled,
must be regarded as virtually incapable of solution.” (ADD REF) All
branches, all levels of the military in the Third Reich used the Enigma
freely. In fact, a large part of Hitler’s idea of blitzkrieg was based on the
Enigma: as General Erhart Milch stated “the real secret is speed – speed
of attack through speed of communication,” which the mechanized Enigma
provided German commanders, as well as total security, or so they believed.

Breaking the Enigma was a daunting task. The number of possible com-
binations used to produce a message was enormous. Given that the Germans
used a new one every day, trying to guess that combination was prohibitively
difficult. Fortunately, due to espionage, mathematics, and some amazing in-
spiration, the Allies were able to decode German messages daily. As it turns
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Figure 1. A German Enigma Machine, image from Wiki-
media Commons.

out, many of the components of the security of the Enigma could be divorced
from each other and dealt with separately, which reduced the difficulty of
the task significantly.

It’s impossible to do Enigma and Ultra justice in a short chapter. Our
goal here is to give a brief overview of how Enigma worked, and how the
Allies beat it, and talk just a little about the importance of codes in war.
For more on the subject, see ADD REFS.

Before we turn to the mathematics of the subject, it’s worth looking at
the Enigma one last time (Figure 1). One of its great advantages is the ease
of use. There are two keyboard on the top, one is like a typewriter with
keys to press, the other has blubs underneath the letters which light up.
After setting everything up to encrypt a message, all the operator has to do
is type; each time he presses a key, what that letter encodes to lights up.
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To decrypt a message, again after choosing the correct settings, the person
on the other end just types in the encrypted message. Each time she types
a letter, the letter that lights up is what that letter decrypts to. In other
words, encryption and decryption is done at the speed of the typist! There
is no difficult math problem to be solved on either end; the machine takes
care of everything. This is a very desirable feature for battlefield situations.

1.2. Some Combinatorics

There are several reasons for studying the Enigma early in a cryptography
course. It’s one of the most important examples ever, and its successful
decryption changed the fate of the world. Mathematically, it’s extremely
accessible. All we need is some elementary combinatorics. We begin by
quickly reviewing these through some basic problems, isolating the functions
which will appear in later sections when we turn to analyzing the Enigma.

Let’s start with a basic example:

Question #1: How many ways can you arrange three people in a line?
Answer: Suppose we want to seat our friends Alan, Bernhard, and Charles.
In this problem, the order of the three people matter. Thus Alan, Charles
and Bernhard is different than Charles, Bernhard and Alan. A good way
to approach this is to fill the three available slots one at a time. How many
choices do we have for the first position? Before anyone is assigned, we have
three people: Alan, Bernhard and Charles. We have to choose one of them
for the first position. We’re now left with two people, and two open spots.
We don’t need to know which two are left, only that there is one less person.
We thus have two ways to choose which person is second. For the last spot,
we only have one choice left, and we must put the remaining person in that
final place. The total number of arrangements is 6, coming from 3 ways to
choose the first person, 2 ways to choose the second, and one way to choose
the last.

A good way to view this is to look at this as a tree (see Figure 2). We
start with all positions open. We have three choices for the first person,
which creates three branches. At the next stage, we have two remaining
people to choose from. Each of our initial branches then branches again,
but this time into just two possibilities, one for each remaining person. Note
that while the people involved in the split differ from branch to branch, the
number of people involved is always two. Finally, each branch is continued
once more as we assign the third person. As only one person is left to assign,
the choice is forced upon us.

Arguing along the same lines, we see that if we had four people to
arrange in a line (with order mattering), the number of possibilities would
be 4 · 3 · 2 · 1 = 24. These descending products occur so frequently in the
subject that we have a special name and notation for them. We call these
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Figure 2. Tree diagram indicating the number of ways to
put three people in a line (when order matters). Note we end
up with 6 = 3 · 2 · 1 possible arrangements.

factorials, and write 3! for 3·2·1 and 4! for 4·3·2·1. Notice that this function
grows very rapidly; 10! is ten times larger than 9!, which is 8 times larger
than 8!, and so on. For each positive integer n, we have n! = n · (n− 1)!.

As the above problem suggests, there is a combinatorial interpretation
of the factorial function: n! is the number of ways of arranging n people in
a line, when order matters. It turns out to be useful to define 0!. Though
it might seem surprising, the right definition is to take 0! to be 1. We may
interpret this as follows: there is only one way to do nothing!

We now generalize our first question.

Question #2: How many ways can you line up three of five people?
Answer: Again, this is a problem where order matters. If the five people are
Alan, Bernhard, Charles, Danie and Ephelia, then choosing Charles, Danie
and Alan is counted as different than choosing Danie, Alan and Charles.
The solution to this problem is similar to the previous. We have already
solved how to choose five people from five: the answer is 5!, or 5 · 4 · 3 · 2 · 1.
The difference now is that we’re not choosing all five people. We’re only
choosing three, and thus stop after the third choice. Our answer is therefore
5 · 4 · 3, or 60. Notice how quickly the number of possibilities grow; drawing
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a tree with all the possibilities is no longer practical!

There is another way to write down the answer. Instead of writing 5·4·3,
we could instead write 5!/2!. The reason is

5!

2!
=

5 · 4 · 3 · 2 · 1

2 · 1
= 5 · 4 · 3.

What we’re doing is multiplying by 1 in a clever way, and multiplying by
1 won’t change the answer. Here we wrote 1 = 2!/2!. The reason this is a
good idea is that the product 5 · 4 · 3 looks a lot like a factorial, but it isn’t.
It’s missing the 2 · 1. By including that factor, we obtain a factorial. The
problem, of course, is that we can’t just multiply part of an expression; thus
if we multiply by 2 · 1 we must also divide by it. If instead we had to choose
4 people from 9 with order mattering, the answer is 9 · 8 · 7 · 6. To make this
into 9! we need the factor 5!. We thus multiply and divide by this, and find
the number of ways to choose 4 people from 9 (when order matters) is 9!/5!.

More generally, if we want to take k people from n people with order
mattering, it’s just n · (n−1) · · · (n− (k−1)). This bit is a little tricky. Why
is this the product? Clearly the first term is n, then n−1, then n−2. What
is the last term? We need to have k terms in all. The first term, n, is really
n− 0. The second term is n− 1, and notice that we are subtracting one less
than the number term it is. Thus to find the kth term we must subtract off
one less than k, or k − 1. Equivalently, the last term is n − (k − 1). We’ve
just shown that the number of ways to choose k people from n people (with
order mattering) is n(n− 1) · · · (n − (k − 1)). This wants to be a factorial,
but it doesn’t go all the way down to 1. To remedy this, let’s argue as before
and multiply by (n − k)!/(n − k)!. This won’t change the answer as we’re
just multiplying by 1, but now we have all the numbers from n down to 1
being multiplied together, and we see that the answer is just n!/(n− k)!.

So far, we’ve looked at how to arrange people (or more generally any-
thing) when order matters. What happens when you just need to pick some
people and the order in which you pick them doesn’t matter? We can view
this as choosing a subset of a group to serve on a committee, and all com-
mittee members are equal; conversely, what we did earlier (arranging people
with order mattering) would be assigning people to a group but designating
one the president, one the vice-president, one the treasurer, and so on.

For example, imagine we want to pick four people from a group of four
people. How many different ways could we do this? Since there are only
four people, and we have to pick four, there’s no freedom. We have to pick
all four, and thus there’s only one way to pick four people from four people
when order does not matter. Equivalently, we can say there is only one
group of four people that can be made from four people. Let’s consider a
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more involved case.

Question #3: How many ways are there to pick four people from a group
of nine people, when it doesn’t matter which order the people are selected?
Answer: Now things are more interesting, and it isn’t immediately clear
what the answer should be. Fortunately, there’s a nice way to view this
problem. Let’s first consider the easier problem of how many ways there are
to choose four people from nine. We looked at this earlier, and saw that the
answer is 9 · 8 · 7 · 6 or 9!/5!. This is the number of ways of choosing four
people from 9, but order matters. The clever idea is to realize that this is
precisely 4! more than the number of ways to choose four people from nine
when order does not matter. Why? For each group of four people chosen,
there are 4! ways to order them. Each of these 4! ways has been counted in
the 9!/5! ways to choose four people from nine with order mattering. Thus,
if we take 9!/5! and divide by 4!, we remove the extra counting, we remove
the ordering we don’t care about, and obtain the answer. The reason this
works is that all groups of four people have the same number of arrange-
ments.

There is nothing special with choosing four people from nine. If instead
we wanted to take k people from n, not caring about the order, we would
argue similarly. We first note that there are n!/(n − k)! ways to choose k
people from n when order matters. For each group of k people there are k!
ways to assign an ordering; thus each group of k people is counted k! times
among the n!/(n−k)! orderings. If we divide by k! we remove this counting,
and find that the number of ways to choose k people from n people, not
caring about the order in which they are chosen, is simply n!

k!(n−k)! .

It was worth defining the factorial function and giving it special notation
because of how often it appears in combinatorial problems. Similarly, it is
worth introducing some notation for n!

k!(n−k)! so we don’t have to write this

out every single time. We let
(

n
k

)

:= n!
k!(n−k)! , and read this as n choose k.

This is called a binomial coefficient. The top refers to the number of
options we have, and the bottom to how many we are choosing. Order does
not matter, and we assume that 0 ≤ k ≤ n.

The binomial coefficients have many useful properties. Doing some sim-
ple algebra, we see that

(

n
k

)

=
(

n
n−k

)

, because

(

n

n− k

)

=
n!

(n− k)!(n − (n− k))!
=

n!

(n− k)!k!
=

n!

k!(n− k)!
=

(

n

k

)

.

While the above argument proves the claim, it’s not particularly enlighten-
ing. There’s a much better argument. Note

(

n
k

)

is the number of ways to
choose k people from n when order doesn’t matter; however, if we choose k
people from n, we can view this as excluding n − k from n. Thus

(

n
k

)

must

be the same as
(

n
n−k

)

. This proof illustrates a central idea in combinatorics:
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if you can tell an appropriate story, you can give an interpretation to quan-
tities and see the relationships.

When encountering new ideas, it’s usually a good idea to test simpler
cases where you have some intuition. Let’s imagine the case where we have
3 people, and we want to choose a group of 3 and it doesn’t matter what
order we choose. Clearly there’s only one way to do this (as we have to take

everyone), which agrees with our formula since
(

3
3

)

= 3!
3!0! = 1 (remember

0! = 1). What if we want to choose 3 people from 4, where order doesn’t

matter? Our formula tells us there are
(4
3

)

= 4!
3!1! = 4 distinct possibilities.

To conserve space, let’s give the four people the boring names A, B, C and
D. There are 24 ways to choose three of four. There are six ways to order A,
B and C if they are the three people chosen: {A,B,C}, {A,C,B}, {B,A,C},
{B,C,A}, {C,A,B}, {C,B,A}. These six different orderings have the same
people, and thus only contribute one possibility. Similarly there are six
ways to order the people A, B and D, another six to order A, C and D,
and finally six more for B, C and D. Note 6 = 3!, and thus the number of
unordered possibilities is 4!/3! = 24/6 = 4, as each unordered possibility of
three people can be ordered 3! ways.

To sum up, we have shown (CANNOT GET BOX TO WORK
HERE – BOX THIS LATER)

Let n and k be integers, with 0 ≤ k ≤ n

• The number of ways to choose k objects from n objects with order
mattering is n(n − 1) · · · (n − (k − 1)), which may be written as
n!/(n − k)!. Here m! denotes m factorial, which is m(m− 1) · · · 1,
and we have set 0! to equal 1.

• The number of ways to choose k objects from n objects with or-
der not mattering is n!

k!(n−k)! , which is denoted with the binomial

coefficient
(

n
k

)

.

Armed with our building block functions of factorials and binomial co-
efficients, we can now analyze the Enigma’s complexity and see why the
Germans were unconcerned about Allied attempts to crack their codes.

Exercise 1.2.1. How many ways are there to choose at most 3 people from
10 people, when order does not matter? What if order does matter?

Exercise 1.2.2. Five men and eight women go to a dance. How many ways
are there to choose three men and three women? How many ways are there
to choose three men and three women so that each of the chosen men dances
with exactly one of the chosen women?
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Exercise 1.2.3. This problem is hard, but can be solved with binomial
coefficients if you look at it the right way. Imagine we have 10 identical
cookies and five (distinct) people: Alice, Bob, Charlie, Danie and Eve. How
many different ways can we divide the cookies among the people? Since the
cookies are identical, all that matters is how many cookies a person receives,
not which cookies.

1.3. Enigma’s Security

If the Enigma were used properly, it would’ve been extremely secure. While
today computers are everywhere, during World War II the situation was
completely different. People had to examine all the tedious combinations
by hand; in fact, the need to quickly exhaust numerous possibilities was a
huge impetus in the birth of computers. As we’ll soon see from analyzing the
Enigma’s workings, the Germans were justified in believing that the Enigma
would provide secure communications. Fortunately for the Allies, however,
the Germans had several practices that greatly weakened the actual secu-
rity. Before describing their errors, let’s take a look at what exactly made
the Enigma seem so impregnable. This section relies heavily on The Cryp-
tographic Mathematics of Enigma by Dr. A. Ray Miller [Mi]. It’s a short
pamphlet from the NSA and available online, and we highly recommended
it to anyone interested in additional reading.

1.3.1. The Plugboard

There are five things that contributed to the Enigma’s cryptographic strength.
The first was a plugboard with twenty-six holes for 13 connector cables,
each hole associated with a letter (see Figure 3). The operator would plug in
these cables as designated in the code book, which in effect would switch the
outputs of the connected letters. For instance, if the code book indicated a
cable should be plugged into the holes for E and F, the outputs for those
two letters would be switched. In that case, the word ‘effect’ would become
‘feefct.’ If instead O and Y were connected and P and N were connected,
then ‘effect’ would appear unchanged, but ‘pony’ would become ‘nypo’. The
more pairings we have, the more garbled the words become.

The operator could use anywhere between zero and thirteen cables. Not
all letter connections are possible. You can’t connect two letters to the same
letter, or a letter to itself. Let’s see how these choices affect the security of
a message. Specifically, let’s determine how many different letter swaps are
available. We first consider the simplest possibility: don’t use any cables
(and thus no message is changed in typing). There’s only one way to do
nothing. Another way of looking at this is that there is only one assignment
of cables connecting pairs of letters that results in no swaps: use no cables!
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Figure 3. The Enigma’s plugboard, with O and Y con-
nected and P and N connected. Image fromWikimedia Com-
mons.

Now let’s look at a slightly more difficult example. Let’s use just one
cable. In this case, we’re going to switch two letters (like we did for E and F
before). How many different ways could we do this? Well, we have 26 letters,
and we want to choose two of them to switch. This is the definition of the
binomial coefficient

(

26
2

)

from last section, as this represents the number of
ways to choose two objects from 26 when order doesn’t matter. One of the
hardest parts of combinatorial problems like these is keeping track of when
order matters and when order doesn’t matter. At the end of the day, we
can’t tell if we first plugged in one end of the cable to E and then to F, or
the other way around. It doesn’t matter; all that matters is that E and F
are now connected. Thus, for these cable problems, it is always choosing
with order immaterial. As

(

n
k

)

= n!
k!(n−k)! , we see

(26
2

)

= 26!
2!(24)! = 26·25

2·1 , or

325.
We’ve now figured out how many ways to use zero cables (just 1 way,

which is
(

26
0

)

) or one cable (
(

26
2

)

or 325 ways). What about two cables? A
natural thought is that it should be the number of ways of choosing four
letters from 26, with order not mattering, or

(

26
4

)

. While this looks like the
next natural term in the pattern, it isn’t quite right. The reason is that we
need to do more work than just choosing four letters; after we choose the
four letters, we must pair them into two groups of two. For example, if we
choose the four letters A, E, L and Y, then there are three different ways
to pair them into two groups of two: we could have the pairings A-E and
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L-Y, or A-L and E-Y, or A-Y and E-L. Note that the pairing A-E and L-Y
is the same as the pairing E-A and L-Y or L-Y and A-E and so on, as all
that matters is which two are paired and not the order. Because of this, we
see it is going to be a lot more work to determine the number of ways to use
exactly two cables.

There are several ways we can arrange this calculation. One nice way
is to first choose the four letters to be paired with the two cables; there are
(26
4

)

ways to do this. We then have to split the four letters into two pairs of
two; we don’t care which pair is listed first, or which letter is listed first in
each pair. How many ways are there to do this? Similar to our analysis on
the number of ways to choose k objects from n objects when order doesn’t
matter, it’s easier to first impose an order and then remove it. What we’ll
do here is put labels on the pairs (first pair, second pair), and then remove

them. If we have four letters, there are
(4
2

)

ways to choose two letters to
be the first pair. This leaves us with two remaining letters, which must be
chosen to be the second pair; there are

(2
2

)

ways to choose the two remaining

letters for the second pair. Multiplying, we see that there are
(

4
2

)(

2
2

)

ways to
pair the four letters into two pairs of two, with the pairs being labeled first
pair, second pair. We now remove the labels. How many ways are there to
assign the two labels to the two pairs? There are 2! ways – we have two
choices for the label for the ‘first’ pair, and then one remaining label for
the second. Thus, we have overcounted each desired pairing of four letters
into two pairs (not caring about which is the first and which is the second

pair) by a factor of two. The answer is not
(4
2

)(2
2

)

, but instead
(4
2

)(2
2

)

/2!.
Combining this with the number of ways to choose four letters from 26, we
see there are

(26
4

)(4
2

)(2
2

)

/2! ways to use two cables. Multiplying this out, we
get 44,850, much larger than the 325 possibilities with just one cable!

To highlight the method, let’s consider three cables. There are several
different ways to look at this problem. We’ll first solve it by modifying our
previous argument. We have three cables; as each cable connects two letters,
we must choose 6 letters out of 26. There are

(26
6

)

ways to do this. Now
that this has been done, we have to pair the six letters into three groups
of two. It doesn’t matter which group is called the first pair or the second
or the third, or in a pair which letter is chosen first. A good way to count
the possibilities is to look at how many ways we can pair the six letters into
three pairs with the pairs labeled, and then remove the labels to reduce the
over-counting. There are

(6
2

)

ways to choose two letters from the six letters

for the first pair,
(4
2

)

ways to choose the two letters from the remaining four

letters for the second pair, and then
(2
2

)

ways to choose two letters from the
remaining two letters for the third pair. There are 3! ways to assign labels
to the three pairs; thus we have over-counted by a factor of 3!, which we
must remove. Putting this all together, the number of ways to use three
cables is

(26
6

)(6
2

)(4
2

)(2
2

)

/3!.
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If we multiply out the last factor,
(6
2

)(4
2

)(2
2

)

/3!, we notice something
interesting. It’s

(

6

2

)(

4

2

)(

2

2

)

1

3!
=

6!

2!4!

4!

2!2!

2!

2!0!

1

3!

=
6 · 5

2

4 · 3

2

2 · 1

2

1

3 · 2 · 1

=
6 · 5 · 4 · 3 · 2 · 1

6 · 4 · 2
= 5 · 3 · 1.

We generalize the factorial notation and write n!! to mean the product of
every other term, down to 2 if n is even and 1 if n is odd. We call this the
double factorial. While we could’ve set n!! to be the factorial of n!, that
expression just doesn’t turn up that often in problems, whereas the product
of every other term frequently arises. We can define anything we want –
the question is what’s useful to define. Here, it turns out that the every
other product is useful, and worth giving a special name. Thus 5!! = 5 ·3 ·1,
6!! = 6 · 4 · 2, 7!! = 7 · 5 · 3 · 1 = 7 · 5!! and so on.

We just showed that the number of ways to pair six letters into groups
of two, where the pairs are unlabeled and it doesn’t matter if a letter is
listed first or second in a pair, is 5!!. One can similarly show that if we had
to pair eight letters into groups of four then the answer would be 7!!, and in
general if we had 2p letters that had to be paired into groups of two then
the answer would be (2p − 1)!!.

Exercise 1.3.1. Before reading on, where we give the answer, try to prove
the above. Specifically, show that there are 7!! ways to pair eight letters into
four groups of 2, and 9!! ways to pair ten letters into five groups of 2. If
you know mathematical induction, extend your argument to show that there
are (2p − 1)!! ways to pair 2p letters into p groups of 2. As this is such an
important result, we give its solution below.

One way to see the last claim is to proceed by induction. We know it’s
true when we have six letters. Imagine now we have eight letters. The first
letter has to be paired with one of the remaining 7 letters; there are 7 ways
to do this. We now have 6 letters remaining that must be paired in groups
of two. We know there are 5!! ways to do this, and thus the number of ways
to pair 8 letters in groups of 2 is just 7 ·5!!, which is 7!!. We now turn to ten
letters. Consider the first letter. It must be paired with one of the remaining
9 letters; there are 9 ways to do this. We’re now left with 8 letters that must
be matched in pairs; however, we’ve just shown that the number of ways to
do this is 7!!. Thus the number of ways to pair ten letters in groups of 2 is
just 9 · 7!! or 9!!. Arguing along these lines proves the claim in general.

Based on our calculations above, we see that if we have p cables connect-
ing 2p letters, then the number of possibilities is

(26
2p

)

(2p−1)!!; the
(26
2p

)

comes
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from the number of ways to choose 2p letters from 26, and the (2p − 1)!!
comes from the number of ways to match them in pairs.

To get the total number of combinations for any number of cables used,
we just add the results for having p cables, where p ranges from 0 to 13. We
can just add them because using 1 cable results in a different output than
when we don’t use any cables (‘effect’ versus ‘feefct’), that is, one setting
was independent from all other settings. When we add these together (using
(−1)!! = 1 to allow us to write things in a common language), we get

(

26

0

)

(−1)!! +

(

26

2

)

1!! +

(

26

4

)

3!! +

(

26

6

)

5!! + · · ·+

(

26

26

)

25!!

= 532985208200576 ≈ 5.32 · 1014.

Exercise 1.3.2. Which value of p do you think gives the greatest contribu-
tion to the sum? Why? Compute all the values and see if you’re right.

This is an enormous number of possibilities. To put it in perspective,
imagine the Allies could check a million combinations a second (this is far
more than was possible back in the 1940s). How long would it take to go
through the approximately 5 · 1014 possible cable connections? There are
about 31,536,000 seconds in a year (60 seconds in a minute, 60 minutes in
an hour, 24 hours in a day and 365 days in a year). In one year, checking at
a rate of a million wirings per second, the Allies would be able to examine
31,536,000,000,000 or about 3.15 · 1013, less than a tenth of the possibilities!
To make matters worse, the wiring chosen changes – after all this work the
Allies would only know the wiring for one particular day, and would have to
start all over again for the next day.

To sum up, even assuming the ability to check a million wirings a sec-
ond (which was well beyond what the Allies could do) only gives us a 10%
chance of finding one day’s wiring in an entire year’s time! We can begin
to see why the Germans were confident in the security of Enigma, especially
as this is just the first of many pieces. We’ll now discuss the rotors, whose
complication dwarfs the contribution of the cables.

Exercise 1.3.3. Based on the definition of the factorial and the double
factorial, what do you think the triple factorial should be?

Exercise 1.3.4. There is a simple function f such that (2n)!! = f(n) · n!.
What is f(n)?

Exercise 1.3.5. Show that
∑n

k=0

(

n
k

)

= 2n.

1.3.2. The rotors and reflector

The rotors were the second component contributing to the Enigma’s strength
(see Figure 4). These rotors took 26 inputs and wired them to 26 outputs.
The number 26 is no accident, as the effect of the rotor was to provide
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Figure 4. The stack of rotors inside an Enigma machine,
consisting of three rotors and Umkehrwalze-B (the reflector).
Image from Wikimedia Commons from user Matt Crypto.

another exchange between letters. This means the Germans could have con-
structed 26! different rotors. Why is this? Let’s look at how this wiring was
done. Each rotor has two sets of the alphabet, and the rule is we connect
each letter in the first alphabet with a letter in the second alphabet, never
connecting two letters to the same letter (this means we can’t send A and
B on the first alphabet to C on the second, but we could send A to A).

Let’s consider the letter A. We can connect it to any of the 26 letters in
the second alphabet. Now that we’ve connected A somewhere, what about
the wire for B? Like before, we can wire it to any one of the remaining
outputs. There are only 25 available now because the wire from the letter A
is connected to one of them already. The wire from C can connect to any of
the 24 remaining outputs, and so on, so we see that there are 26! different
choices. Note this problem is the same as our earlier exercise of arranging n
people in a line. We may regard the letters in the first alphabet as positions
1, 2, 3, . . . , 26, and the second alphabet is then 26 people we need to order
on the line, with order counting.

As the standard Enigma machines had three rotors, the number of pos-
sibilities for the three rotors is 26!3 (26! ways to choose each rotor), which is
approximately 6.559·1079 . We thought 5.32·1014 was bad; checking rotors at
a rate of a trillion possibilities per second means we could investigate about
3.2·1025 triples of rotors in a year. As the universe has only existed for a few
billion years (a billion is 109), we see that if we check a trillion combinations
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per second for the entire life of the universe then we’re not even at 1040, and
we need to get up to 1079. Actually, the Allies had one piece of information
on the German rotors: they knew the Germans didn’t reuse a rotor in the
machine, and thus the three rotors had to be distinct. Therefore, instead
of 263 possible triples of rotors, in fact it was 26! · (26! − 1) · (26! − 2). The
difference between these two is negligible, and the first 26 digits of the two
numbers are the same. (The difference between these two numbers is about
4.87 · 1053. We’re not saying that this large number is negligible; what’s
negligible is the savings. We’ve saved much less than 10−20 percent!)

The next variable was how the rotors were initially positioned. Operators
could rotate the rotors to any initial position they wanted. Since there
were 26 different positions, and three rotors, the number of possible initial
positions is 26 · 26 · 26, or 263 = 17, 576.

The forth component to consider is the reflector. The reflector was
really just like a plugboard with 13 cables. Each letter was connected to
another letter via a wire, essentially switching the letters, just like the plug-
board. The difference was that the reflector never changed, and switched
all 26 letters. From our analysis earlier, we see that the number of possible
reflector arrangements is just

(

26

26

)

(26− 1)!! = 7, 905, 853, 580, 625 ≈ 7.9 · 1012.

The last contribution to the Enigma’s complexity were notches on the
rotors. These notches controlled when the next rotor would move forward
by one letter. The rotor positioned on the right would rotate every time
a key was pressed, the second rotor would turn every 26 key strokes, and
the last rotor would rotate once for every 26 rotations of the second rotor,
or once every 26 · 26 = 676 keystrokes. The notches determined when the
second and third rotor first turned. [PICTURE if we can find one] If
the first notch were in a particular position, the second rotor would turn
for the first time after, say, 3 keystrokes. If it were in a different position,
the second rotor would not rotate until, say, 19 keys had been pressed. The
notch on the first rotor could be in one of 26 positions, and similarly for the
second rotor. Since the reflector didn’t rotate, the notch on the third rotor
did nothing. Therefore, the number of possibilities from this component of
the Enigma is just 262 = 676. The notches provided an enormous amount
of security. Without the notches, each letter is always encrypted the same
way. This means the messages would be vulnerable to a frequency analysis.
We’ll describe this in greater detail in ADD REF, but the gist is easy to
describe: if you have a very long message in English, the most common letter
is almost surely an ‘E’. Using letter frequencies (or, even better, frequencies
for pairs and triples of letters), we can make very good guesses at how the
letters are being switched. The advantage of the notches is that at first an
‘E’ is encrypted as a ‘Y’, and then maybe as an ‘N’, then perhaps as an
‘R’, and so on. By constantly changing how each letter is encrypted, it’s
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impossible to attack the code with a frequency analysis.

To sum up, the number of possibilities introduced by the rotors, notches
and reflector is

26!(26! − 1)(26! − 2) · (26)3 ·

(

26

26

)

(26− 1)!! · 262 ≈ 6.16 · 1099.

In the previous section we looked at the plugboard. Its contribution of
about 1014 looked impressive, but that complexity is dwarfed by these other
features.

Exercise 1.3.6. In the rotors for the Enigma, it’s possible to connect a
letter to a copy of itself; for example, we could send A to B, B to C, C to A,
and then D to D, E to E, and so on. What if we added a restriction that no
letter could go to a copy of itself? It’s now a lot harder to find the number of
such rotors. If you know about the Principle of Inclusion / Exclusion, that’s
a great way to attack this. Instead, let’s consider ‘simpler’ alphabets. Find
the number of such rotors if there are only 2 letters in our alphabet. What if
there are 3 letters? What about 4 letters?. (As the number of letters in the
alphabet grows, the ratio of number of these restricted rotors to the number
of rotors converges to 1− 1/e.)

1.3.3. Possible Enigma States

Now comes the fun part – we’ll see why the Germans had such faith in
the Enigma. Since each component could be changed without affecting any
other part, to get the total number of Enigma configurations we just need to
multiply our previous numbers together. The result is simply astonishing.
In its full glory, we get

3, 283, 883, 513, 796, 974, 198, 700, 882, 069, 882, 752, 878, 379, 955,

261, 095, 623, 685, 444, 055, 315, 226, 006, 433, 615, 627, 409, 666,

933, 182, 371, 154, 802, 769, 920, 000, 000, 000,

or, approximately 3 · 10114.

This number is so much larger than what we’ve seen before that it takes
awhile to view this in a meaningful way. Currently we believe the universe
is about 14 billion years old, or approximately 3.2 · 1022 seconds. Using
guestimates from the number of stars in the universe, one gets that there
should be about 1080 atoms in the universe (give or take a few orders of
magnitude). Imagine each such atom were a supercomputer devoted entirely
to checking Enigma possibilities, and capable of looking at a billion (i.e.,
109) setups per second. If these supercomputers had been running non-stop
since the creation of the universe, by today they would only have checked
a little less than 10112 possibilities. In other words, in such a situation
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of unbelievably fantastic computer power at our disposal (and for such an
incredibly long period of time), we would have less than a 1% chance of
having found the correct wiring for a given day! It’s no wonder that the
Germans felt the Enigma provided more than enough of a challenge to the
Allies, and were not worried about their messages being read.

Exercise 1.3.7. Consider all the pieces in the Enigma, from the plugboard
to the reflector. Which steps adds the most number of combinations?

1.4. Cracking the Enigma

In the last section we showed that the Germans had more than 10114 possible
ways to configure their Enigma machines. Against that sort of number, how
could the Allies possibly have broken the Enigma? Fortunately for the Allies,
the Germans made several mistakes in its use. For a very good read and
more detail on some of the ways the Enigma was weak, we recommend The
Code Book by Simon Singh [Si], from which much of the information in
this chapter is taken. Another good source is the NSA pamphlet Solving
the Enigma - History of the Cryptanalytic Bombe by Jennifer Wilcox [Wi],
available online.

Before looking at some of the German mistakes in implementation, let’s
look at some things that will bring that terrifying number of 10114 down a
little right off the bat. For one thing, suppose we can solve every challenge
the Enigma throws at us except how the plugboard is arranged. Then
what we have is essentially a monoalphabetic cipher. In other words, it
just switches letters and always switches them the same way. We can use
frequency analysis to solve this puzzle. We’ll discuss this in detail in Chapter
ADD REF. As we said earlier, in English the most common letter is E, so
if you have lots of encrypted messages, whatever letter appears most often
probably decrypts to E. You can get more advanced, and look at the most
common pairs of letters, and so on.

Moreover, if not all the letters are switched, it might be possible to just
guess what the words are. For instance, take the phrase “sieben und zwanzig-
ste Bataillon”, which is German for twenty-seventh battalion. If you were
reading a message from the 27th Battalion, you might guess that “aiebe-
nundzwsnzigatebstsillon” really means “siebenundzwanzigstebataillon”, and
that S and A have been switched. Continuing in this manner, you could,
perhaps, find all the plugboard settings. So, assuming we can handle every-
thing else, we’ve reduced the number of settings we have to check by about
1014. Unfortunately this still leaves us the problem of solving the rest, and
the number of combinations there is of the order 10100, but we’ve made some
progress.

We now turn to the rotors. We need to choose three different rotors.
There are 26! possibilities for each rotor, which led to approximately 6.559 ·
1079 triples of distinct rotors. This is a huge part of the remaining 10100
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possibilities, and if we can make good progress here, we’re well on our way
to deciphering the Enigma. It’s important to remember the distinctions and
differences between theory and practice. While in theory a German soldier
could have any set of rotors on him, a little though shows that there is no
way that he can carry all 26! ≈ 4 · 1026 rotors with him in the field. Reasons
for this range from the obvious (it would weigh to much, there’s no way
German factories could churn out that many rotors) to the more subtle (if
he had even 1010 rotors on him, it would take a long time to find the right
ones to use, and the Enigma is supposed to provide not only secure but also
rapid communication). So, naturally, in practice there would only be a few
available rotors. While this looks promising, unfortunately we still don’t
know the exact layout of the rotors. How can we solve this problem?

Instead of trying to magically guess the right layout, we use espionage,
which in fact is exactly what the Allies did. Even before the war started,
the French were able to obtain documents that gave the layout of all of the
rotors in use at the time. During the war, the Allies were occasionally able
to capture Enigma machines, and so if things changed, they were able to
find out how. Thus, instead of having to test 6.559 · 1079 different rotor
wirings, they could test five (or in the German navy’s case, ten, as the navy
felt (correctly) that more security was needed). This is a huge savings, and
without this precious information no further progress could have been made.

Next, let’s look at the notches. Remember the notches determine when
the rotors advance by one letter, and that only the first two notches affect
the code. Therefore, you can imagine that if you could solve every other part
of the arrangement, you could just decode until the first notch advanced,
which would cause the decoded message to suddenly become gibberish again.
Whenever that happened, you would know that another notch had advanced,
and in this way, you could easily determine the initial settings of the notches.

All we have left are the rotor settings. If there were some way to sep-
arate finding the rotor settings from all the other problems, we could solve
the entire cryptogram. As it turns out, there are two ways in which this was
done. The first was developed by Marion Rejewski and the Polish cryptana-
lysts before the war, and the second was developed by Alan Turing and the
British once the war had begun.

Once the Germans switched over to using the Enigma in 1926, most
European intelligence agencies quickly gave up decoding German messages.
There was one nation, however, that could not afford to relax: Poland.
They realized that being between Germany and Russia was a dangerous
place to be, especially since they now controlled formerly German areas. As
a result, they needed all the intelligence they could get from communications
intercepts.

When the French got a contact in the German signals corps, the Poles
requested all the information that the French had on the Enigma. They also
did something that had never been done before: they hired mathematicians
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as cryptanalysts. In the past, cryptanalysts were generally linguists, or peo-
ple who were good with words, but now, with the advent of the mathematical
complexity put forth by the Enigma, a different sort of mind was required.
These two moves proved to be a winning combination. They got the wiring
information from espionage, and the ability to put that information to good
use from the mathematicians.

The Germans distributed what was called the ‘day key’ in a different
code book every month. The day key specified the settings for the Enigma
for that day: which rotors went where, which letters to switch, and so on.
The day key, however, was only ever used to transmit three letters at the
beginning of the message, which indicated what the receiver should set his
rotors to for the rest of the message. Except, that’s not exactly right. Rather
than transmit just those three letters, for much of the war the letters were
transmitted twice to avoid operator error. This was an enormous mistake,
and in fact, was just how Rejewski was able to break the Enigma.

The following example is taken from Simon Singh’s The Code Book [Si];
for more details, see his chapter “Cracking the Enigma.” Suppose you inter-
cept a message that starts with PEFNWZ. You know that P and N are the
same letter, but are enciphered differently because of the way the Enigma
works. Similarly, E and W, and F and Z are the same letters, respectively.
After receiving many messages and using this information over and over, you
might tabulate the relationships in the following way. You know that the
first and fourth letter are the same. If you intercepted four messages that
started with LOKRGM, MVTXZE, JKTMPE, and DVYPZX, you would
know that L and R, M and X, J and M, and D and P are all respectively
the same letter. If you did this enough times, you might come up with a
table like this:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F Q H P L W O G B M V R X U Y C Z I T N J E A S D K.

Let’s look at this closely. What is A linked to? F, as we can see by looking
in the second row below A. What is F related to? Looking at the second row
just below F, we see W. And below W, we see A. Well that’s interesting.
We’ve found a chain of letters that loops back on itself: A→F→W→A.
Clearly, if the day key were set differently, we would have a different chain,
maybe longer, maybe shorter, and probably different letters. However, and
this is really important, the length of the chains is determined purely by the
rotor settings! The plugboard might change what letter goes where, but the
length of the chain would stay the same regardless of the plugboard setting.
Using this knowledge allowed Rejewski to ‘fingerprint’ a specific day key. He
then set about using the Cipher Bureau’s Enigma replica to catalogue every
single possible rotor setting and the link numbers associated with it. As you
can imagine, this was an enormous and tedious task. However, since the
number of rotor settings is only about 105,000, it was doable if the need was
great enough, and the need was definitely great. It took the Cipher Bureau
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more than a year to do it (while this is a long time, it is magnitudes less than
the life of the universe!), but after that, all they had to do was build the
table of relationships, find the size of the chains it generated, and look it up
in the catalogue. As we’ve already established, once this was accomplished,
the other parts of the Enigma code (the plugboard, notches and the like)
were possible to break.

Later in the war, however, the Germans realized their mistake, and
stopped transmitting the three letters for the message key twice. Once this
happened, it was no longer possible to build the table of relationships, and
the catalog was next to useless. Enter Alan Turing and Blechley Park (where
Ultra was headquartered). Turing and his associates had been concerned
that the Germans would do just that, and had developed an ingenious plan
to get around it. This new method required what is known as a ‘crib.’ A
crib is a word that you know will occur in the plaintext of the message. For
instance, one of the most common cribs the British made use of was wetter,
the German word for weather. When intercepting messages from a weather
station, the word wetter is likely to occur. This time, though, instead of
using letters encrypted the same way to find chains, Turing wanted to find
loops occurring between plaintext letters and cipher text letters. Suppose,
for example, that you knew the word ‘wetter’ was encrypted to ‘ETJWPX.’
Let’s view this as a table of relationships:

W E T T E R

E T J W P X.

What does W go to? It goes to E, and E goes to T. What does T go
to? Well, one T goes to W, forming a chain. If, somehow, you could find
rotor settings that enciphered W, E, T, and R in such a way as to create
this pattern, you would have a likely candidate for the rotor settings in the
message key. Once you had the message key, deducing the day key was a
simple matter. The British quickly built machines to do this, and were soon
up and running.

1.5. Codes in World War II

While the point of this chapter is to describe the Enigma and Ultra, we
would be remiss if we didn’t mention some of the consequences of decipher-
ing German messages, as well as some of the other cryptographic issues and
challenges faced during the war. Numerous books have been written about
each of these incidents; our purpose here is to highlight some of these issues,
and excite you to read more.

(1) Battle of the Atlantic: Throughout the entire war, there was a con-
stant struggle between the Allies, desperate to get food, supplies
and troops from North America to assist the Allied cause around
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Europe, and the Axis, desperate to sink these loaded ships. The
Germans relied heavily on submarine warfare to disrupt and sink
Allied shipping. Cracking the Enigma provided a decisive advan-
tage to the Allies, who could not only adjust convoy routes to avoid
enemy subs but could also use this intelligence to seek out and sink
these ships. There are numerous other examples where decrypted
intelligence played a key role in the distribution of Allied forces,
ranging from aerial defense in the Battle of Britain (July 10 - Oc-
tober 31, 1940), to Operation Vengeance on April 18, 1943 (the
successful attack on Japanese Admiral Yamamoto’s plane, leading
to his death).

(2) Coventry: November 14, 1940. Conventry was an important indus-
trial city for the British, manufacturing many military items. On
November 14, 1940, the Germans launched a devastating raid on
the city. Some sources say the British knew about the impending
attack, but only through an Ultra decrypt, which is why no addi-
tional defensive measures or warnings happened. One of the great-
est fears of the British was that the Germans would realize their
Enigma had been compromised. Thus, Allied forces could never act
on Ultra decrypts unless there was a convincing story that would as-
cribe their actions to something other than having broken Enigma.
While the truth about Coventry may be unknown, this was not an
academic problem and occurred in various forms throughout the
war. For example, Allied forces launched many aerial reconnais-
sance missions in the Mediterranean to find the Axis ships. The
Allies already knew the location of these ships from Ultra decrypts,
but it was imperative that the Germans and Italians see the Allied
planes, and thus believe that this was how their positions were dis-
covered (see, for example, the Battle of Cape Matapan, March 27
- 29. 1941). Many pilots were shot down and died to preserve the
Ultra secret.

(3) Battle of Midway: June 4 - 7, 1942. After a horrible defeat at
Pearl Harbor on December 7, 1941, American forces were on the
defensive in the Pacific, and lost numerous engagements against
Japanese forces. It’s hard to do justice to this battle in a para-
graph; it was one of the turning points in the war, a massively
decisive victory for the Americans. One aspect of the battle is
worth mentioning. Japanese codes were partially broken, and the
Allies knew an attack was coming. Unfortunately, the target was
given a code name, so even though the message was decrypted, all
battle orders listed the target as ‘AF’. Based on the code name and
other items, many believed that ‘AF’ was the Japanese designation
for Midway. If this were true, the Americans could deploy their
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forces appropriately and surprise the Japanese; however, if ‘AF’
happened to refer to another target.... There was thus a pressing
need to quickly determine whether or not ‘AF’ was Midway. The
solution was ingenious. Commander Joseph J. Rochefort and his
team at Station Hypo hit on an elegant solution. They had Midway
send a message that their water distillation plant was damaged and
request fresh water. Shortly afterwards, decrypted messages stated
that ‘AF’ was in need of water.

(4) Operation Fortitude: March - June, 1944. In war, there are se-
crets, and then there are SECRETS. We’ve already discussed Ul-
tra, which fell into this category – if the Germans had realized
their codes were compromised, they could have easily upgraded
their security with disastrous effects. Another super-secret was the
Manhattan Project, the development of the atomic bomb which
ended the war with Japan in the Pacific. One more worth men-
tioning is D-Day. This was the Allied invasion of Europe. The fact
that the Allies were planning to invade Europe in force wasn’t a
secret – the Axis knew such discussions were in place from the time
America entered the war. What was unclear was when the invasion
would be, and where. Both of these were closely guarded secrets on
a need-to-know basis. Though the Allies eventually decided upon
landings in Normandy, France, there were other candidate sites.
One was Pas de Calais, also in France. The advantage of a landing
here is that this was the closest point between British and French
soil. Operation Fortitude was part of the Allied effort of disinfor-
mation to convince the Germans that the main attack would be in
Calais. General Patton was given command of a fictitious army unit
with simulated radio traffic, fake equipment, and false information
leaked to known German agents. The deception succeeded bril-
liantly; even after the Normandy landings, Hitler held Panzer tank
units in reserve. He was convinced these landings were a feint, and
numerous units that could have attacked the Allied beachheads in
Normandy sat idle waiting for an attack on Calais that never came.
There is a great lesson to be learned here: one can wreak havoc on
the enemy through careful misinformation, leading to a disastrous
allocation of resources.

There is a common theme above. It’s not enough to crack the enemy’s
code; one has to decide what to do with the information, which ranges
from acting on the message to deciding it was a ploy designed to mislead.
These decisions are one of the hardest optimization problems ever faced,
with trade-offs between what is best in the short term having to be weighed
against the long term advantage of decrypting future messages.
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1.6. Conclusion

The Enigma was a complex machine, among the most advanced of its time.
It had lots of great features: it could quickly encode and decode messages, it
was extremely portable and easy to use, and most importantly, it appeared
perfectly secure. However, due to espionage, mistakes in how it was used,
and the brilliant ingenuity of some very talented people, it was broken.

We’ve made a few simplifications in the few comments we made about
breaking the Enigma. Numerous people from many nations labored for years
in these attempts; there is no way to do justice to their efforts or give credit
to all in just a few pages. Our goal instead is to give a flavor for both
the problem and the mathematics behind it. For more details on how it
was broken and for more technical readings, we recommend [Mi, Si, Wi].
MORE REFS





Bibliography

[CS] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, third
edition, Springer-Verlag, New York, 1998.

[Go] M. J. E. Golay, Notes on digital coding, Proc. I.R.E. 37 (1949), 657.
[Ka] M. Kanemasu, Golay codes, MIT Undergraduate Journal of

Mathematics 1 (1999), no. 1, 95–99. Available online at
http://www-math.mit.edu/phase2/UJM/vol1/MKANEM∼1.PDF

[LS] J. Leech and N. J. A. Sloane, Sphere packings and error-correcting

codes, Canad. J. Math. 23 (1971), 718–745. Available online
at http://cms.math.ca/cjm/v23/cjm1971v23.0718-0745.pdf and
http://www2.research.att.com/∼njas/doc/leech.html.

[Mi] A. R. Miller, The Cryptographic Mathematics of Enigma, NSA Pamphlet,
2001. http://www.nsa.gov/about/ files/cryptologic heritage/

publications/wwii/engima cryptographic mathematics.pdf

[MS] S. J. Miller and C. E. Silva, If a prime divides a product..., preprint.
http://arxiv.org/abs/1012.5866

[MT-B] S. J. Miller and R. Takloo-Bighash, An Invitation to Modern Number Theory,
Princeton University Press, Princeton, NJ, 2006, 503 pages.

[Si] S. Singh, The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography, Anchor Books (a division of Random House), New
York, 1999.

[Th] T. M. Thompson, From error-correcting codes through sphere packings to

simple groups. The Carus Mathematical Monographs, Number 21, the Mathe-
matical Association of America, 1983.

[Wi] J. Wilcox, Solving the Enigma - History of the Cryptanalytic Bombe, NSA
Pamphlet, 2001. http://www.nsa.gov/about/ files/cryptologicvheritage

/publications/wwii/solving enigma.pdf

25


