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Abstract

After a brief review of the standard triangle iteration, we will explore
some properties of terminating triangle sequences. Our first result will
be motivated by the geometry of the iteration. We prove that, for any
real number a € (0,1) and any positive integer n, it is possible to find a
corresponding 3 with 0 < 8 < « such that the pair (o, 3) terminates after
n iterations. Our next results focus on two classes of quadratic irrationals
that give particularly regular terminating sequences.

1 Introduction

This paper will start with an overview of the standard triangle iteration as out-
lined in work by Garrity [1]. We will begin with the geometrical interpretation
of triangle sequences. We define an iteration 7' on the triangle

A={(z,y):1>x>y >0}
This triangle is partitioned into an infinite set of disjoint subtriangles
Np={(z,y)erN:1—ax—ky>0>1—z—(k+ 1)y},

where k is any nonnegative integer.
Given (a, 8) € Ay, define themap T: A — AU{(x,0):0 <z <1} by

T(a, f) = <5’ 1ak6) '
e @

The triangle sequence is recovered from this iteration by keeping track of the
number of the triangle that the point is mapped into at each step. In other
words, if T*=1(a, B) € A, , then the point (a, 3) will have the triangle sequence
(al,ag,. . )

This paper deals with properties of terminating triangle sequences. A triangle
sequence for (a, 3) is said to terminate after n steps if T™(«, ) is on the line
segment bounded by (0,0) and (1,0). Thus, we can understand the set of points



with a particular finite triangle sequence as the appropriate preimage of that
segment bounded by (0,0) and (1,0). [2]

In section 2 of this paper, we use this geometric notion of termination to
prove that for any « in the interval (0, 1) there exists a 8 such that (a,3) € A
and T"(a, ) lands on the segment bounded by (0,0) and (1,0). In other words,
for every « one can find a § such that the triangle sequence for the pair (¢, ()
terminates after n terms.

Sections 3 and 4 explore two separate classes of quadratic irrationals a such
that the triangle sequence for (o, o) terminates with a regular predictable pat-
tern. For both of these classes, we define o in a similar way. This relationship
and the palindromic-like triangle sequences strongly suggest a broader class of
quadratic irrational forms which also have similar structure to their triangle se-
quences.

2 Existence of Terminating Sequences of Length n

Theorem 1 For any a € (0,1) and any n € Z*,38 € (0,a] such that the
sequence for (a, 8) terminates after n terms.

Proof:
Let I = (0,1) x {0}. The triangle sequence for the point («, 3) terminates
after n terms if T (o, 3) € I.

Notation : T} ! is the inverse of the map T restricted to Ay,

-1 _ 1 - _ mp—1/p—(n—-1)
T (z,y) = (kx+y+1’ k;c-i—a:y+1)' Tk,ﬁ.kl =T, (Tk”z...kl)-

If the vertical line z = « intersects a preimage 7} l” . (I) for some sequence
kn,kn_1 ...k of nonnegative integers, then the triangle sequence for the point
of intersection is ky,, kp—1...k1. So we must show that for any n € ZT, the line
x = « intersects some T} " . (I).

The preimage T}, " ;. (I) is the line segment between 7, " | (0,0) and T}, ™ , (1,0).
For n =1, we have T}, '(0,0) = (g557» g5957) = (1,0) and
T, '(1,0) = (L, 725)- So, for any a € (k%rl, 1),z = « intersects T}, *(I).
Now suppose = = a intersects 7}, " ; (I). We shall show that for some integer

E+10 k+1
>0, v = « intersects T,;(ﬁgll’)l (I). First, note that:

T," ., (0,00 = T, (T.'(0,0))

Tyy... T2

T, " 0(1,0)

Tpy...T

T, " (T, 1(0,0))

Tp...T2

= T, (0,0).

Tn...T2,Y

. —n —-n —(n+1 —(n+1
In particular, T, " ;. (0,0) =T, " ., 1, 41(0,0), and Tkn(...kl,)o(ov 0) = Tkn(...kl,)l(07 0)

for all I. Furthermore, T, "F1}(0,0) = T, , (T571(0,0)) = T;." ., (1,0).



Now,

—(n+1 —(n—1 _ _
Tkn(...kl,)h(lvo) = Tkn(...k2)(Tkll(Th 1(1,0)))

_ =11y L 1

= Lk ks ( k1 (m7 m))

_ 7(n71)( h+1 1 )

T Thaek N T4 b1k + 14+ h+1

1

el 1 LESH
Fcke AREL 0 117 B 0 41
—(n—1 — ]-

= Tkn(...kQ )(Tklil(ma 0))

_ 1
= Tk,,fi.kz,klﬂ(mao)-

So, if x = « intersects TI;T_‘_'kl (I), then there is a positive integer [ such that «

is between the first coordinates of 7) " ; (1,0) and Tk_yﬁ.kl-rl(l-%v 0). But these
)

are the endpoints of T,;(f;gll’l(l), S0 T = « intersects this segment.

3 Palindrome Class Number One

In this section of the paper we will define a class of quadratic irrational pairs (¢, ()
which have a regular terminating triangle sequence. For this class of ordered pairs
a will be completely determined by a positive integer n and 8 will be completely
determined by a.

Theorem 2 Given any (a1, 1) pair of the form

a; = Vn?2—1-—n+1, where n is any positive integer
pr = o?

then N, 5, 18

(0,0, (2n — 3),0,1, (2n — 4),0,2, (2n. — 5),... ,0, (2n — 4),1,1)



Proof:
The Base Cases:
We know that,

1—0&1J
a =
' L 5

1= (m—n+1)J
L(2n — 2)(n — vn2 — 1)

B n—vn?-1
 l@en—2)(n—vnZ 1)
B 1

N _2n—2J'

Since n > 2 we know 2n—2 > 1. This implies that LﬁJ = 0. Therefore, a; = 0.
Additionally, we know that,

(e,02) = TA—-n++vn?2—-1, 2n—2)(n—vVn?-1))
(1—n++/n?—1, novnt -1 )

1-n++vn2-1
Therefore,
1= [1-(1-n+vn2-1)| 5
QQ{ 7 JL e ftlfn+\/n flJ.

T nt/m1
We will show that 0 <1 —n++vn? —1< 1. For all n > 2,

2n > 2
—2n+1 < -1
n?—2n+1 < n?—1
n—1 < n?—1
0 < 1—-n++vn?2-1
and
n?—-1 < n?
vVn2—-1 < n
vn2—1-n < 0
l—-n++vnt-1<1

Therefore, ay = 0.



Similarily, we have,

n— VT =T
B) = T (1-n+vm2—1, 2V 2
(043 63) < n n 1_n+m>
B Vn—1 1-(1-n++vn?2-1)
B 1—n—i—\/n2 N2 1-n+vn2-1
B Vn—1 n—+vn?—1
B (2n—2)(n—vVnZ2—1) 1 —n++n?—
_ 1—n++vn?—
2n — 2’ 2n —2
Therefore,

R = T _ 2n—3
as = 1—n2+\/752—1 B 1—n2+\/7£2—1 B 1—-n++vn2-1 ’

We will show that 2n — 3 < —2n=3___ 3 < 2n — 2. For all n > 2,

1—n+vn -
n?-1 < n?
n-1 < n
1+vn?2—-1 < n+1
l-n+vn2—-1 < 1
2n —3
—_—— > 2n -3
l-n++vn?-1
and
in > b
in+1 < 8n-—4
dn* —8nP+4dn+1 < 4n* —8nP+4+8n—4
dn* —8nd +4n+1 < (n? —1)(4n® —8n+4)
(2n? —2n —1)? 9
—_— < -1
(2n — 2)? "
1
~ 3 5 < n? —1
n —
1
172 5 < 1l-n++vn?2-1
n—
2n — 3
—_— < 2n -2
l1—-n++vn?-1

Therefore, a3 = 2n — 3.



The Inductive Step:
An inequality that we will need later is:

2n1_1>n— n?—1 (1)
Proof:
1 > -1
4n® —3n+1 > 4n®—3n-—1
(n+1)4n* —4n+1) > (“An®+4n+1)(n—1)
(n*-1@2n-1)%* > (2n+1)*(n-1)?
Vn2—12n—-1) > (2n*—n-1)
1 > n@n—1)—2n-1)vn2-1
1 2
o — 1 > n—yvn®—1

O

It is easier to deal with the calculations in this proof if we make a few substi-
tutions along the way. Let

le—n—km

and let
y=2n—2.

Note that (1 — x)y = 2. Then our results from the previous section are:

k| ax | ox Bx
1 0 z | y(l—2a)
2 0 T 1_71

1 T
3ly-1]y u

We will now inductively show that the sequences k, ay, a,, B continue in their
respective patterns above. Let,

k ay g B

c 0 T (y—r)(1—2)
c+1 r w(yfr) 17
c+2 |y—r—1 yir yfT




be three consecutive terms in the sequence where » < y — 3. Then, we know

that,
- —(y—r-1)%
T(ac+27 ﬁc+2) - (xv Y 1 Y
y—r
(,(y—r—1(1-2))
= (acr3, Bera)
Therefore,

fots = {(y—rl—l)f(l—w)J N Ly—i—lJ =0

Additionally, we know that,

)

((y_r_l]:)(l_x) 1;$)

T(oeq3, Bers) =

_ (x(yfrfl),lfx)

Y T
= (ac+47 ﬁc+4)-

Therefore,
1 — zly=r=1)
Acta = 1_;’J
L Tr
(2n—2)—(2n—3—7r)(1—n+vn2—1)

_ 2n—2

B 1-n—vn2—1 J
- 2n—2

B 2n—2—(2n—3—r)(1—n+\/n2—l)J
L 1-n—+vn2-1

2n — 2

= | ——m——F——-2n-3—r

L1—-n++vVn—2 ( )J
We will show that r +1 < —2°=2__ — (2n, — 3 —7) < r + 2. To get the left

1—-n+vn—2
inequality, we observe that for all n > 2,

n2—-1 < n

l-n+vn2—-1 < 1

m—2 < 2n - 2

n— e e S
1—-n++vn2-1

+1 < 2n - 2 (2n—-3-r7)

r ——F——(2n—-3—7r).
1—-n++vn?-1



To get the right inequality we recall Equation 1,

! > 21
om — 1 novn
2n — 2
i < l—-n++v/n%2-1
2n—1
2n — 2
_ < 2n-—-1
l-n++vn?-1
2n — 2
T @n-3-71) < r+2
I-n++vn?2-1 ( )

Therefore, acyqg =7+ 1.
Similarily, we have,

e o 2umrel) (g oq)loz
T(ctera; Beta) (x(y_m,«_n ) z(y—r—1) )

Y Y

yl—2z) y—(y—r—LDa—(r+1)z
B ($2(y—r—1)’ (y—r—1x )
_ 1 y—ay
- (yrlwyr1ﬂ>
_ 1 T
a (y—T—Fy—T—1>

Therefore,
1— —
Qe+s5 = yx IJ
L y—r—1
_ |y—r—2
h | =z
B on—r—4 J
11 —-n++vn2—1
We will show that,
2n—r—4
—r—-2=2n—-r—-4< ———— <y—-r—1=2n—r — 3.
Y T 1—-n4++vn?-1 Y

To get the left inequality, we observe that for all n > 2,

n2—-1 < n

on — 1 — 4
l-n+vn2-1 < 2-r'=°

2n —r —4
2n—r—4
n—r—4 < —mM ————
l—-n++vn?-1



To get the right inequality we recall Equation 1,
1

_ 2 _1
o1 > n n
2n — 2
i < 1l—=n++vn2-1
2n—1
2n—r—4
L < ].*77,+‘/7l2*1
2n—r—3
2n—r—4

< 2n—r-3

1—-n++vn2-1

Therefore, acr5 =y — 1 — 2.
Thus by induction, we have:

ar=0 if k=1 (mod3)
k-2
U = —5— if k=2 (mod 3)

k—
ak.:yflf?g if k=0 (mod 3)

It follows that after 2(2n —3) iterations, we will have a = 0, ay, = % and (B = 3.
Then, T (o, Bx) = (x,1—2x) which lies on the line dividing triangles zero and one.
Therefore, the triangle sequence will terminate with a = 1 after 4n — 6 terms.

O

4 Palindrome Class Number Two

In this section we will define another class of quadratic irrational ordered pairs
which have a very regular triangle sequence. Once again, « is determined by a
positive integer, n, and § is determined by «.

Theorem 3 Foranyn € Z©, ifa =

2 ’
then the triangle sequence for (o, B) terminates, with the following pattern:

Vn241-n+1 andﬁ —a2 = n®—n41+(1-n)vn?+1
5 = =

0,0,1 n=1(mod 4)

1 n = 2(mod 4)

L5 LL5n-9 . Lldptln—dp-5.0 g TS
p=0 p=1 P 1,2 n=0(mod 4)



Proof:

Let (o, Bk) = TF 1(a, B), so the k'™ term of the triangle sequence is aj, =

1-ar | Now suppose that for some integer p > 0,

1—n++vn?+ (n —p+1)n+1)+dp+1-—n)vn?+1
(Qapi1, Bapy1) = 5 5 )

Note that for p = 0, this gives the original pair («, 3).

We will consider two cases. First we will show that when n > 4p + 5, the
next four terms of the triangle sequence are 1,1,4p + 1,n — 4p — 5, and that
(Qa(p1)+15 Bap+1)+1)) is of the same form as (upi1, Bapr1), i-e.

_(1=n++Vn?+ ( —Ap+D)+Dn+1)+U@pP+1D)+1—n)vn2+1
(Qapts, Bap+s) = 5 5 )

Then we will show that for n < 4p 4 5, the sequence terminates within three
terms, with the patterns given above.

Casel: n>4p+5
First we must show that asp4+1 = 1.

_ | 1=oupqa l—oypy1 1+n—v/n2+1
But aspi1 = L Bap+1 J’ and Bap+1  (n2—(dp+1)n+1)+(dp+1—n)vn2+1" So we

must show that 1 < 1;?% < 2. But we know that n? + 1 > n2, so we have:
P

n—(p+2)*(n*+1) > [n—(4p+2)°n°
(n—p+2)Vn2+1 > n®—(4p+2)n
l+n—vn2+1 > n? —(Ap+Dn+1+Ep+1—n)yn2+1
T 7!

and

At +4n? < 4Ant+4n?+1
mvn2+1 < 2n%2+1
1
vVni4+l—-n < —

2n

Since n > 4p + 5, we know that 2n > 8p + 3, so 2n > 2n — (8p + 3) > 0.
Therefore:

vVn24+l—-n < L

2n7(8p+3)
(2n—8p+3))(vVn2+1—n)
(2n— (8p+3)VvVn2+1 < 20— (8p+3)n+1

10



Adding 14+ n+ (8p+ 2 — 2n)v/n? + 1 to both sides yields:

I+n—vn2+1 < 202 —2(dp+1)n+2+8p+2—2n)vVn2+1
1—aypq1

2
B4p+1

S0 a4pt+1 = 1, as desired.

Now we find aapio and Bapio:

(Qap2, Bapy2)

_ <ﬁ4p+1 1 — aapt1 — ﬁ4p+1>

b
Q4p41 Q4p4-1

_ ((nz—(4p+1)n+1)+(4p+1—n) n? 1

1-n+vn2+1 ’
2—(1—=n)—vn2+1—-n?>—M“4p+1)n+1)— dp+1—-n)Vvn2+1
1—-n++vn2+1

Multiplying numerator and denominator by 1 —n — v/n2 + 1 yields:

<<n2 ~Up+ Dnt 1)(L—n) —(@p+1-m)(n>+1) |
—2n

[(4p+1—n)(1—n)—n%—“p+n+1)]vn2+1
—2n

((4p+2n—n2)(1—n)+ @p+2—n)(n2+1) = [dp+2—n)(1 —n) + (4p+ 2)n — n2Vn2 + 1)
—2n

i

Expanding and simplifying, we have:

<n2+(4p+1)n+4p+(n4p)\/n2+1 n? — (dp+n— (4p+2) — (n— (dp +2)) n2+1>
o 2n ’ 2n

_ <(n—4p)(l—n—|—\/n2—|—l) (n—4p—2)(1—|—n—\/n2+1))
2n ’ 2n ’

11



To calculate agpio = {%J, note that
v

1 —aupra n?+ (1 —4p)n —4p — (n — 4p)vn? + 1
Bap+2 n2—(4p+1)n—(@4p+2)—(n—(Ap+2)vVn2+1

Since n + 1 > v/n? + 1, we have:

2n+1) > 2vn2+1

n?—@Ap—1n—4p—(n—4p)Vn2+1 > n?—Up+1)n—(4p+2)—(n— (dp+2)Vn2+1
1o

64;0—1—2

Also, sincen >4p+4 and vn?+1<n+1,

(n—(Ap+4NVn2+1 < (n—Up+4)(n+1)=n*>—Up+3)n— (4p+4)
n?+(1—4p)n—4p— (n—4p)Vn2+1 < 2n® —2(4p+ 1)n —2(4dp +2) + (—2n + 8p +4)\/n2 + 1
T-owpr
Bap+2

S0 a4py2 =1, as desired.

Now:

<ﬂ4p+2 1—agp2 — ﬁ4p+2>

(a4p+3vﬁ4p+3) = o +27 Capr2
P P

)

n?—(Ap+1)n—(4p+2)—(n— “p+2)vn2+1
—n2+@p+1)n+4p+ (n—4p)vn? +1

oM +2—2v/n2 +1 )

—n24+{dp+1)n+4p+ (n—4p)vn? +1

Multiplying numerators and denominators by the conjugate of the denomina-

tor and simplifying yields:

b

[ 2(4p+1)n? = 2(4p+ 1)(4p + 2)n — (2n® — 2(4p + 2)n)Vn? + 1
n —2n3 4 32p2n + 16pn

4(dp+ )n —4nvn? + 1
—2n3 + 32p2%n + 16pn

B —(Ap+1)(n—4p+2)+(n—“4p+2)vn2+1 —2(4p+1)+2vn2+1

N n2 — 4p(4p + 2) T n2—dp(dp +2) '

12



Now,

Aapt3 = {1 _ a4p+3J
pt ﬁ4p+3
and
l—ayprs n?+@p+1)n—@Bp+1)dp+2)—(n— (4p+2))vn2+1
Bap+3 —2(4p+1)+2vVn2 +1 '

Since n > 4p + 2, we have:

Mp+1)n+M4p+2) < (4p+2)n
n>+@Ap+n+(4p+2) < (n+4p+2)n

But n < vn? + 1, so:

n?+@Ap+n+@p+2) < (n+dp+2)vVn2+1
n®+ (4p+1)n— (8p+1)(4p + 2)—
(n—Up+2)vn>+1 < —24p+1)4p+2)+2(4p+2)vn>+1
I —aypys

< 4p+2.
Bap+3

We also know that n? > 4p(4p + 2), so:

2n® > 8p(4p +2)
2n® —8p(dp+2)n > 0
n* +2(4p + 1)n?
+(4p+1)%n? — 8pn™ — 8p(4p + L)n + 16p> > n* + 8pn® + (16p? + 1)n? + 8pn + 16p?
(n?+@p+1)n—4p)® > (n+4p)*(n®*+1)

Taking square roots and adding —2(4p+ 1) — (n — (4p+2))vVn? + 1, we get:

n? — dp(4p +2) + (4p+ 1)n — (dp + 1)(4p + 2) —

(n—(Ap+2)vVn2+1 > —24p+1)?+204p+1)vVn2+1
I —aypys

> 4dp+ 1.
Bap+3

S0 a4py3 = 4p + 1, as desired.

13



Now we calculate aapya and Bapia.

(a4 4 B4 +4) _ <54p+3 1—a4p+3—(4p+1)ﬂ4p+3)
P ) 54 —

Qapt3’ Qapt3

B 2(—(4p+ 1)+ vVnZ +1)

N ((n—4p—2)(—(4p+1)+m)’

n? —16p* —8p+ (4p+ 1)n — (4p+ 1)(4p + 2)
(n—4p—2)(=(p+1) +Vn? +1)

—(n—4p—2)W+2(4p+1)2—2(4p+1)\/m>

(n—d4p—2)(=(p+1) +vn2+1)
( n?+ (4p+1)n —4p — (n+4p)\/7127+1>
n—4p-2" (n—dp-2)(-(4p+1)+Vn?+1

n3 —n? —4dp(4p + 2)n + 4p(4p + 2) — (n® — 4p(4p + 2))vVn? + 1)

<n4p 2’ (n—4p —2)(4p(4dp + 2) — n?
n—1+vn?+
n—4p 27 n—4p—2
Now for asp4, we have:
L L, T Y

Bapt4 n—1++vn2+1

sincen —1++vn?24+1> 1.
And, if n = 4p + 5, then

1-— Q4p44 _ 1
Bapt4 n—1+vn2+1

For n > 4p + 5, we have:

>0=n—4p—>5.

nt+om?+1 > nt4n?
n2+1 > nyn2+1
1
~— > n2+1l-—n
n

14



Butn>n—-4p—5>0, so:

L > Vn2+1l—n

n—4p —5
1
I+ ——— > l-n4+Vn2+1
n—4p—95
—4p—4
k. O R T
n—4p —5
1—aypra n—4p—4

= > n—4p—5
Bapt4 1—n++vn2+1 P

SO G4pta =n —4p — 5.

Finally,

Bapya 1 —aupra—(n—4p—5)Bapia
(Qapys, Bapys) = ;
N4pt4 Qap+4

2 2

B <1n+\/n2+1 n—dp—2-2—(n—4p—5)(1—n+vn2+1)

)

2 2

B <1n+\/n2+1 n? —(Ap+ 1) +Dn+1+@p+1)+1-n)Vn2 +1

as desired. Thus for any n, as p increases, the pattern 1,1,4p+1,n —4p —5
continues to repeat in the triangle sequence as long as n > 4p + 5.

Case II: Now we consider the case where n < 4p + 5. We must address four
cases, where n = 4p+1,4p+2,4p+ 3,and4p + 4. Note that if lgka’“ is an integer,
then the sequence terminates after ay, since Ox4+1 = 0.

Case 1: n=4p+1

We will show that the sequence terminates with the terms as4p+1 = 0, Gap12 =
0,a4p43 = 1.

For n =4p+ 1, (Qapt1, Bap+1) = (
So

1—n+vn2+1 l)
2 27"

I — aupi

= _/n2
Goer J [1+n n?4+1|.

Q4p+1 = \\
But we have n < vn2 + 1, so

1+n—+v/n2+1<1.

And1+n>+vn?+1,so0

1+n—+vn2+1>0.

15

)



Therefore, a4p11 = 0.

Then we have:

(Qapy2, Bapy2) =

1 1+4n—+vn2+1
l—n+vVn2+1 1—-n+vn2+1

)

—2n —2n

n—14++vnZ+1 —2+2\/n2+1>
2n ’ n ’

l1—oupio _ ntl—vn?F1

Bap+2 —242/n241°
Since n =4p+ 1 > 1, we have:

For a4p12, we have

§ < n
4
6n < 8n?
n*+6n+9 < 9n*+9
n+3 < 3vn?+1
n+l—vn2+1 < —-2+4+2vn?2+1
lfa4p+2_n+1—\/7127+1 < 1

Baprz  —2+42Vn2+1
Also, we know that n +1 > vn2 + 1, so:

n+l—vn2+1 > 0
l—aypyo  n+1—-vn2+1

Bap+2 —24+2vn?2+1

Thus a4py2 = 0.
Therefore,

Bap+2 1 — aupto
(a4p+33/64p+3) = ( L ) L
Q4pt2  Q4py2

<—2+2\/n2+1 n—l—l—\/n?—i—l)

n—14+vnZ+1 n—1+vnZ+1

—2n% —2n + 2n\/n2 +1 2n%2—2nvn2+1

’ —2n

= (n+1—vn?2+1,—n+vVn2+

16

_ <1n n2+1 (1-n?)+®m?>+1)—(1+n+1-n)vn2+1

)

)



Then
1 —aypy3  —n+vn2+1 _

Bap+3 —n+vVnZ+1l

S0 a4p43 = 1, and the triangle sequence ends.

Case 2: n=4p+2
We will show that the sequence ends with a4,+1 = 1.
If n =4p + 2, then (up+1, Bapt+1) = (1*"+2V S 1*”*2\/ "2+1).

So:
l—oagpy1  14+n—vn2+1
Bap+1 1+n—-—+vn2+1

Therefore, aspy1 = 1, and the sequence ends.

=1

Case 3: n=4p+3
We will show that the sequence ends with the terms a4p11 = 1, aspy2 = 3.

If n= 4p + 3, then (()(4p+1, ﬁ4p+1) = (1_n+2' n2+1’ 1+2(n72 n”+1) )

l-aupt1 _  14n—vn2+41 .
So Bap+1 142n—2v/n2+1’ and:
n2+1 > n
1+n—vn2+1 > 14+2n—-2vn?2+1
lmaypn o
Bap+1
Also, n > 3, so 8 < 6n, and:
m24+9 < MmP4+6n+1
3vVnZ+1 < 3n+1
1+n—+vn2+1 < 24+4n—4v/n?2+1
Tmapn
6417-&-1

So A4p+1 = 1.
Then:

(Oé4p+2, 54p+2)

1+2n—-2vVn?2+1 —-n+vn?2+1
l-n+vn24+1 1-n+vn2+1

B (—3—n+3\/n2+1 n+1—\/n2+1>

2n 2n

But then we have:

l—agpyo  34+3n—3vn2+1 _3

Bap+2 1+n—vn2+1

17



S0 a4p 2 = 3, and the sequence ends.

Case 4: n=4p+4:
We will show that the sequence ends with the terms aspy1 = 1, aspt2 = 2.

If n = 4p + 4, then (upi1, Bapt1) = (PHW, 1+3(n72 ),

So for aspi1 = {%J, we have 1;:;??1 = 11‘;2:;\%21 We know
Vvn? +1 > n, so we have:
2¢v/n?24+1 > 2n
1+n—+vn2+1 > 14+3n—-3vn?2+1
Toompn
ﬁ4p+1
And n > 4, so:
24 < 10n
25m% +25 < 25n%4+10n+1
5vn?2+1 < bdn+1
1+n—+vn2+1 < 24+6n—-6vn?2+1
1—
ST Mkl
ﬁ4p+1

So aspy1 =1, and

(Oé4p+2» 54p+2)

l-n+vn2+1 '1—n+vn2+1
B <4+2n—4\/n2+1 —2n—2+2\/n2+1>

<1+3n—3\/n2+1 —2n+2\/n2+1>

—2n —2n

n n

<2n+2\/n2+1 n+1\/n2+1>

Then

l—agpo  242n—2vn2+1 _o

Bap+2 1+n—vn2+1

S0 a4pt+2 = 2, and the sequence ends.

2
Thus the terms of the triangle sequence for (v, ) = (¥ ”2+;*”+1 , = _"+1+(é_n) Vn®+1 )

are as follows:

For n > 4p + 5:
aapy1 =1 apy2 =1 apy3 =4p+1 apya =N —4p —5

18



For n < 4p+5,n = 1(mod 4):

aapr1 =0 agpi2 =0

For n < 4p+ 5,n = 2(mod 4):

aapt1 =1 end

For n < 4p+5,n = 3(mod 4):

agpyr =1 Qapto =2

For n < 4p+5,n = 0(mod 4):

Qgpp1 =1 Ggpy2 =3

agpy3 =1

end

end

19
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