
On periodic sequences for algebraic numbers

Thomas Garrity

Department of Mathematics
Williams College

Williamstown, MA 01267
email:tgarrity@williams.edu

Abstract

For each positive integer n ≥ 2, a new approach to expressing real
numbers as sequences of nonnegative integers is given. The n = 2 case
is equivalent to the standard continued fraction algorithm. For n = 3,
it reduces to a new iteration of the triangle. Cubic irrationals that are
roots of x3 +kx2 +x−1 are shown to be precisely those numbers with
purely periodic expansions of period length one. For general positive
integers n, it reduces to a new iteration of an n dimensional simplex.

1 Introduction

In 1848 Hermite [5] posed to Jacobi the problem of generalizing continued

fractions so that periodic expansions of a number reflect its algebraic prop-

erties. We state this as:

The Hermite Problem: Find methods for writing numbers that reflect

special algebraic properties.

In attempting to answer this question, Jacobi developed a special case of what
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is now called the Jacobi-Perron algorithm. Bernstein [1] wrote a good survey

of this algorithm; Schweiger [9] covered its ergodic properties. Brentjes’ book

[2] is a good source for its many variations. Using quite different methods,

Minkowski [7] developed a quite different approach to the Hermite’s problem.

For another attempt, see the work of Ferguson and Forcade [4].

In this paper we give another approach, which will also be a generalization

of continued fractions. To each n-tuple of real numbers (α1, . . . , αn), with

1 ≥ α1 ≥ . . . ≥ αn, we will associate a sequence of nonnegative integers.

For reasons that will become apparent later, we will call this sequence the

triangle sequence (or simplex sequence) for the n-tuple. The hope is that the

periodicity of this sequence will provide insight into whether or not the αk

are algebraic of degree at most n. We will show that this is the case for when

n = 3.

In the next section we quickly review some well-known facts about con-

tinued fractions. We then concentrate on the cubic case, for ease of expo-

sition. The proofs go over easily to the general case, which we will discuss

in section nine. In section three we define, given a pair (α, β) ∈ {(x, y) :

1 ≥ x ≥ y ≥ 0}, the triangle iteration and the triangle sequence. Sec-

tion four will recast the triangle sequence via matrices. This will allow us

to interpret the triangle sequence as a method for producing integer lattice

points that approach the plane x + αy + βz = 0. Section five will show

that nonterminating triangle sequences uniquely determine the pair (α, β).
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Section six discusses how every possible triangle sequence corresponds to a

pair (α, β) ∈ {(x, y) : 1 ≥ x ≥ y ≥ 0}. Section seven turns to classifying

those pairs with purely periodic sequences. Section eight concerns itself with

periodicity in general. Section nine deals with the general case n.

At http://www.williams.edu/Mathematics/tgarrity/triangle.html, there

is a web page that give many examples of triangle sequences and provides

software packages running on Mathematica for making actual computations.

I would like to thank Edward Burger for many helpful discussions. Tegan

Cheslack-Postava, Alexander Diesl, Matthew Lepinski and Adam Schuyler

have provided critical aid. I would also like to thank K. M. Briggs for useful

comments on an earlier version of this paper.

2 Continued Fractions

Given a real number α, recall that its continued fraction expansion is:

α = a0 +
1

a1 + 1
a2+...

,

where a0 = {α} = greatest integer part of α,

a1 = { 1
α− a0

} and b1 =
1

α− a0
− a1.

Inductively, define

ak = { 1
bk−1
} and bk =

1
bk−1

− ak.
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A number’s continued fraction expansion can be captured by examining iter-

ations of the Gauss map G : I → I, with I denoting the unit interval (0, 1],

defined by

G(x) =
1
x
− {1

x
}.

If we partition the unit interval into a disjoint union of subintervals:

Ik = {x ∈ I :
1

k + 1
< x ≤ 1

k
},

then the nonnegative integers ak in the continued fraction expansion of α can

be interpreted as keeping track of which subinterval the number α maps into

under the kth iterate of G. Namely, Gk(α) ∈ Iak .

3 The Triangle Iteration

In this section we define an iteration T on the triangle

4 = {(x, y) : 1 ≥ x ≥ y > 0}.

Partition this triangle into disjoint triangles

4k = {(x, y) ∈ 4 : 1− x− ky ≥ 0 > 1− x− (k + 1)y},

where k can be any nonnegative integer. Note that its vertices are (1, 0),

( 1
k+1 ,

1
k+1) and ( 1

k+2 ,
1

k+2).

Define the triangle map T : 4→ 4∪ {(x, 0) : 0 ≤ x ≤ 1} by setting

T (α, β) = (
β

α
,
1− α− kβ

α
),
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if the pair (α, β) ∈ 4k. Frequently we will abuse notation by denoting

4∪ {(x, 0) : 0 ≤ x ≤ 1} by 4.

We want to associate a sequence of nonnegative integers to the iterates

of the map T . Basically, if T k(α, β) ∈ 4ak , we will associate to (α, β) the

sequence (a1, . . .).

Recursively define a sequence of decreasing positive reals and a sequence

of nonnegative integers as follows: Set d−2 = 1, d−1 = α, d0 = β. Assuming

that we have dk−3 > dk−2 > dk−1 > 0, define ak to be a nonnegative integer

such that

dk−3 − dk−2 − akdk−1 ≥ 0

but

dk−3 − dk−2 − (ak + 1)dk−1 < 0.

Then set

dk = dk−3 − dk−2 − akdk−1.

If at any stage dk = 0, stop.

Definition 1 The triangle sequence of the pair (α, β) is the sequence (a1, . . .).

We will say that the triangle sequence terminates if at any stage dk = 0. In

these cases, the triangle sequence will be finite.

Note that

T (
dk−1

dk−2
,
dk
dk−2

) = (
dk
dk−1

,
dk+1

dk−1
).
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Also note that by comparing this to the first part of chapter seven in [10],

we see that this is indeed a generalization of continued fractions.

4 The Triangle Iteration via Matrices and In-
teger Lattice Points

Let (a1, . . .) be a triangle sequence associated to the pair (α, β). Set

Pk =

 0 0 1
1 0 −1
0 1 −ak

 .
Note that detPk = 1. Set Mk = P1 · P2 · · ·Pk. This allows us to translate

the fact that

T (
dk−1

dk−2
,
dk
dk−2

) = (
dk
dk−1

,
dk+1

dk−1
)

into the language of matrices via the following proposition (whose proof is

straightforward):

Proposition 2 Given the pair (α, β), we have

(dk−2, dk−1, dk) = (1, α, β)Mk.

Write

Mk =

 pk−2 pk−1 pk
qk−2 qk−1 qk
rk−2 rk−1 rk

 .
Then a calculation leads to:

Proposition 3 For all k, we have

pk = pk−3 − pk−2 − akpk−1,
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qk = qk−3 − qk−2 − akqk−1,

and

rk = rk−3 − rk−2 − akrk−1.

Set

Ck =

 pkqk
rk

 .
Note that Ck can be viewed as a vector in the integer lattice. Then the

numbers dk are seen to be a measure of the distance from the plane x+αy+

βz = 0 to the lattice point Ck, since dk = (1, α, β)Ck. Observing that

Ck = Ck−3 − Ck−2 − akCk−1,

we see thus that the triangle sequence encodes information of how to get a

sequence of lattice points to approach the plane x + αy + βz = 0, in direct

analogue to continued fractions [10]. Unlike the continued fraction case,

though, these lattice points need not be the best such approximations.

5 Arbitrary triangle sequences

Theorem 4 Let (k1, k2, . . .) be any infinite sequence of nonnegative integers

with infinitely many of the ki not zero. Then there is a pair (α, β) in 4 that

has this sequence as its triangle sequence.

Proof: Suppose that we have an infinite triangle sequence (k1, k2, . . .). By a

straighforward calculation,we see that a line with equations y = mx+ b will
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map to the line

(1− kb)u− (1− kb)m = bv + bkm+ b,

where T (x, y) = (u, v).

The map T , restricted to the triangle 4k, will send the vertices of 4k to

the vertices of4, with T (1, 0) = (0, 0), T ( 1
k+1 ,

1
k+1) = (1, 0) and T ( 1

k+2 ,
1

k+2) =

(1, 1). Restricted to 4k, the map T is thus one-to-one and onto 4.

But this gives us our theorem, as each 4k can be split into its own

(smaller) triangles, one for each nonnegative integer, and hence each of these

smaller triangles can be split into even smaller triangles, etc. Hence to each

nonterminating triangle sequence there corresponds a pair (α, β). QED

6 Recovering points from the triangle sequence

The question of when a triangle sequence determines a unique pair (α, β)

is subtle. If the sequence terminates, then the pair (α, β) is not unique.

Even if the triangle sequence does not terminate, we do not necessarily have

uniqueness, as discussed in [3]. But we do have

Theorem 5 If an integer k occurs infinitely often in a nonterminating se-

quence (k1, k2, . . .) of nonnegative integers, then there is a unique pair (α, β)

in 4 that has this sequence as its triangle sequence.

The proof is contained in [3] and is not easy.
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If the triangle sequence uniquely determines a pair (α, β), then we can

recover (α, β) as follows. By construction, the numbers dk approach zero.

Consider the plane

x+ αy + βz = 0,

whose normal vector is (1, α, β). As seen in the last section, the columns

of the matrices Mk can be interpreted as vectors that are approaching this

plane. This will allow us to prove:

Theorem 6 If a triangle sequence uniquely determines the pair (α, β), then

α = lim
k→∞

pkrk−1 − pk−1rk
qk−1rk − qkrk−1

and

β = lim
k→∞

pk−1qk − pkqk−1

qk−1rk − qkrk−1
.

The proof is also in [3]. The quick, but incorrect, argument is that the

vectors (pk−1, qk−1, rk−1) and (pk, qk, rk) are columns in the matrix Mk, each

of which approaches being in the plane x + αy + βz = 0. Thus the limit as

k approaches infinity of the cross product of these two vectors must point in

the normal direction (1, α, β). But this is the above limits.
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7 Purely periodic triangle sequences of pe-
riod length one

Theorem 7 Let 0 < β ≤ α < 1 be a pair of numbers whose triangle sequence

is (k, k, k, . . .). Then β = α2 and α is a root of the cubic equation

x3 + kx2 + x− 1 = 0.

Further if α is the real root of this cubic that is between zero and one, then

(α, α2) has purely periodic triangle sequence (k, k, k, . . .).

Proof: We need T (α, β) = (α, β). Since T (α, β) = (β
α
, 1−α−kβ

α
), we need

α =
β

α

and

β =
1− α− kβ

α
.

From the first equation we get β = α2. Plugging in α2 for β in the second

equation and clearing denominators leads to

α3 + kα2 + α− 1 = 0

and the first part of the theorem.

Now for the converse. Since the polynomial x3 + kx2 + x − 1 is −1 at

x = 0 and is positive at x = 1, there is root α between zero and one. We

must show that (α, α2) is in 4k and that T (α, α2) = (α, α2). We know that

α3 = 1− α− kα2.



11

Since α3 > 0, we have 1− α− kα2 > 0. Now

1− α− (k + 1)α2 = α3 − α2 < 0,

which shows that (α, α2) ∈ 4k.

Finally,

T (α, α2) = (
α2

α
,
1− α− kα2

α
)

= (α, α2).

QED

Similar formulas for purely periodic sequences with period length two,

three, etc., can be computed, but they quickly become computationally

messy.

8 Terminating and Periodic Triangle Sequences

We first want to show that if (α, β) is a pair of rational numbers, then the

corresponding triangle sequence must terminate, meaning that eventually all

of the kn will be zero.

Theorem 8 Let (α, β) be a pair of rational numbers in 4. Then the corre-

sponding triangle sequence terminates.

Proof: In constructing the triangle sequence, we are just concerned with

the ratios of the triple (1, α, β). By clearing denominators, we can replace

this triple by a triple of positive integers (p, q, r), with p ≥ q ≥ r. Then we
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have d−2 = p, d−1 = q, d0 = r. Then the sequence of dk will be a sequence of

positive decreasing integers. Thus for some k we must have dk = 0, forcing

the triangle sequence to terminate.

QED

Now to see what happens when the triangle sequence is eventually peri-

odic.

Theorem 9 Let (α, β) be a pair of real numbers in 4 whose triangle se-

quence is eventually periodic. Then α and β have degree at most three, with

α ∈ Q[β] or β ∈ Q[α].

Proof: If both α and β are rational, then by the above theorem the triangle

sequence terminates. Thus we assume that not both α and and β are rational.

Since the triangle sequence is periodic, there will be an integer appearing

infinitely often in this sequence, which means that the sequence will uniquely

determine a pair (α, β).

If the triangle sequence is periodic, there must be an n and m so that

(
dn−2

dn
,
dn−1

dn
) = (

dm−2

dm
,
dm−1

dm
).

Thus there exists a number λ with

(dn−2, dn−1, dn) = λ(dm−2, dm−1, dm).

Using matrices we have:

(1, α, β)Mn = λ(1, α, β)Mm
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and thus

(1, α, β)MnM
−1
m = λ(1, α, β).

Since Mn and Mm have integer coefficients, the matrix MnM
−1
m will have

rational coefficients. Since the dk are decreasing, we must have |λ| 6= 1.

Since both Mn and Mm have determinant one, we have that MnM
−1
m cannot

be a multiple of the identity matrix.

Set

MnM
−1
m =

 q11 q12 q13

q21 q22 q23

q31 q32 q33

 .
Then

q11 + q21α + q31β = λ

q12 + q22α + q32β = λα

and

q13 + q23α + q33β = λβ.

We can eliminate the unknown λ from the first and second equations and

then from the first and third equations, leaving two equations with unknowns

α and β. Using these two equations we can eliminate one of the remaining

variables, leaving the last as the solution to polynomial with rational coef-

ficients. If this polynomial is the zero polynomial, then it can be seen that

this will force MnM
−1
m to be a multiple of the identity, which is not possible.

Finally, it can be checked that this polynomial is a cubic.

QED
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9 The higher degree case

Almost all of this goes over in higher dimensions. We just replace our triangle

by a dimension n simplex. The notation, though, is more cumbersome.

Set

4 = {(x1, . . . , xn) : 1 ≥ x1 ≥ . . . ≥ xn > 0}.

As we did before, we will frequently also call 4 = {(x1, . . . , xn) : 1 ≥ x1 ≥

. . . ≥ xn ≥ 0}. Set

4k = {(x1, . . . , xn) ∈ 4 : 1−x1−. . .−xn−1−kxn ≥ 0 > 1−x1−. . .−xn−1−(k+1)xn},

where k can be any nonnegative integer. These are the direct analogue of

the triangles 4k in the first part of this paper. Unlike the earlier case, these

4k, while disjoint, do not partition the simplex 4. To partition 4, we need

more simplices. Set

4′ = {(x1, . . . , xn) ∈ 4 : 0 > 1− x1 − . . .− xn}.

Then set

4ij = {(x1, . . . , xn) ∈ 4′ : xj ≥ 1− x1 − . . .− xi ≥ xj+1},

where 1 ≤ i ≤ n − 2 and i < j ≤ n. Also, we use the convention that xn+1

is identically zero.

Lemma 10 The 4k and 4ij form a simplicial decomposition of the simplex

4.
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Proof: It can be directly checked that the 4k and 4ij do form a disjoint

partition of4. We need to show that the4k and4ij are simplices. Thus we

want to show that each of these polygons have exactly n+ 1 vertices. Label

the n+ 1 vertices of the simplex 4 by v0 = (0, . . . , 0), v1 = (1, 0, . . . , 0), v2 =

(1, 1, 0, . . . , 0), . . . , vn = (1, . . . , 1). We label each of the n(n+1)
2 edges of the

simplex by vivj if the endpoints of the edge are the vertices vi and vj. Con-

sider the set 4k. The hyperplanes

x1 + . . .+ xn−1 + kxn = 1

and

x1 + . . .+ xn−1 + (k + 1)xn = 1

form two of the faces. These hyperplanes intersect each edge v0vl, with l < n,

in the same point (1
l
, . . . , 1

l
, 0, . . . , 0), where this n-tuple has its first l terms

1
l

and the rest zero. The hyperplanes intersect the edge v0vn in two distinct

points: x1 + . . . + xn−1 + kxn = 1 intersects at the point ( 1
n+k−1 , . . . ,

1
n+k−1)

while x1 + . . .+ xn−1 + (k + 1)xn = 1 intersects in the point ( 1
n+k , . . . ,

1
n+k ).

Since both hyperplanes contain the vertex v1, both intersect all of the edges

v1vl exactly at v1. Both hyperplanes will miss all of the other edges vivj,

with i, j ≥ 2, since for every point on all of these edges, x1 = 1, x2 = 1 and

xl ≥ 0, forcing the intersections to be empty. But now we just have to count

and see that the number of vertices is indeed n+ 1. Thus 4k is a simplex.
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The argument is similar for 4ij. Here we look at the hyperplanes

x1 + . . .+ xi + xj = 1

and

x1 + . . .+ xn−1 + xj+1 = 1.

Both will intersect each of the edges v0vl, for l 6= j, in the same point,

will intersect the edges v1vl exactly at v1 and will miss the edges vivj, with

i, j ≥ 2. They will intersect the edge v0vj at distinct points. Then 4ij has

n+ 1 distinct vertices and is thus a simplex.

QED

Define the n-triangle map T : 4→ 4 by setting

T (α1, . . . , αn) = (
α2

α1
, . . . ,

αn−1

α1
,
1− α1 . . .− αn−1 − kαn

α1
),

if (α1, . . . , αn) ∈ 4k and by

T (α1, . . . , αn) = (
α2

α1
, . . . ,

αj
α1
,
1− α1 . . .− αi

α1
,
αj+1

α1
, . . . ,

αn
α1

),

if (α1, . . . , αn) ∈ 4ij.

By direct calculation, we see that T (α1, . . . , αn) ∈ 4. Further, each of

the restriction maps T : 4k →4 and T : 4ij →4 are one-to-one and onto,

since the vertices of 4k and 4ij map to the vertices of 4 and since lines

map to lines.

We want to associate to each (α1, . . . , αn) in 4 an infinite sequence

(a0, a1, . . .), where each ak is either a non-negative integer or a symbol (ij),
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where 1 ≤ i ≤ n − 2 and i < j ≤ n. If T k(α1, . . . , αn) ∈ 4l, set ak = l

and if T k(α1, . . . , αn) ∈ 4ij, set ak = (ij). Finally, if the nth term for

T k(α1, . . . , αn) is zero, stop.

Definition 11 The n-triangle sequence of (α1, . . . , αn) is the sequence (a1, . . .).

We can also recursively define the triangle sequence as follows. We want

to define a sequence of (n+ 1)-tuples of nonincreasing positive numbers. We

will denote this sequence by d1(k), . . . , dn+1(k), for k ≥ 0. Start with

d1(0) = 1, d2(0) = α1, . . . , dn+1(0) = αn.

Assume we have d1(k− 1), . . . , dn+1(k− 1). Define the symbol ak as follows.

If there is a nonnegative integer l such that

d1(k − 1)− d2(k − 1)− . . .− dn(k − 1)− ldn+1(k − 1) ≥ 0

but

d1(k − 1)− d2(k − 1)− . . .− dn(k − 1)− (l + 1)dn+1(k − 1) < 0,

set ak = l and define

d1(k) = d2(k − 1), . . . , dn(k) = dn+1(k − 1)

and

dn+1(k) = d1(k − 1)− d2(k − 1)− . . .− dn(k − 1)− ldn+1(k − 1).
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If no such integer exists, then there is a pair (ij), with 1 ≤ i ≤ n − 1 and

i < j ≤ n+ 1 such that

dj(k − 1) ≥ d1(k − 1)− d2(k − 1)− . . .− di(k − 1) > dj+1(k − 1).

In this case, define ak = (ij) and set

d1(k) = d2(k − 1), . . . , dj−1(k) = dj(k − 1),

dj(k) = d1(k − 1)− d2(k − 1)− . . .− di(k − 1)

and

dj+1(k) = dj+1(k − 1), . . . , dn+1(k) = dn+1(k − 1).

Now for the matrix version. Let (a1, . . .) be an n-triangle sequence for

(α1, . . . , αn). If ak is a nonnegative integer, let Pk be the (n+ 1)× (n+ 1)


0 0 . . . 0 1
1 0 . . . 0 −1

...
0 . . . 1 0 −1
0 . . . 0 1 −ak

 .

If ak is the pair (ij), let Pk be the (n+ 1)× (n+ 1) matrix defined by:

(x1, . . . , xn+1)Pk = (x2, . . . xj, x1 − x2 − . . .− xi, xj+1, . . . , xn+1).

Then set Mk = P1 · P2 · · ·Pk. Note that detMk = ±1. We have

(d1(k), . . . dn+1(k)) = (1, α1, . . . , αn)Mk.
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Set Mk = (C1(k), . . . , Cn+1(k)), where each Cm(k) is a column vector of the

matrix. Then, if ak = l,

Cm(k) = Cm+1(k − 1)

for m ≤ n and

Cn+1(k) = C1(k − 1)− C2(k − 1)− . . .− Cn(k)− lCn+1(k − 1).

If ak = (ij), then, for 1 ≤ m ≤ j + 1,

Cm−1(k) = Cm(k − 1),

Cj+1(k) = C1(k − 1)− C2(k − 1)− . . .− Ci+1(k),

and for j + 1 ≤ m ≤ n+ 1,

Cm(k) = Cm(k − 1).

Each Ck(m) can be viewed as an element of the integer lattice Zn+1. Then

we have a method for producing elements of the integer lattice that approach

the hyperplane

x0 + α1x1 + . . .+ αnxn = 0.

It is still unknown how to determine when an n-triangle sequence will

uniquely determine an n-tuple (α1, . . . , αn) ∈ 4. If we have uniqueness, we

strongly suspect that

αj = lim
k→∞

(−1)j
Mk(j1)
Mk(11)

,
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where Mk(ij) denotes the determinant of the n × n minor of Mk obtained

by deleting the ith row and jth column. The moral, but incorrect argument,

is the following. First, since detMk = ±1, its column vectors are linearly

independent. But also, the column vectors are approaching the hyperplane

whose normal vector is (1, α1, . . . , αn). Then via standard arguments, the

wedge product C2(k) ∧ . . . ∧ Cn+1(k) corresponds under duality to a vector

perpendicular to C2(k), . . . , Cn+1(k) and by normalizing, will approach the

vector (1, α1, . . . , αn)

With reasonable conditions about uniqueness, we should have

Conjecture 12 Let 0 ≤ αn ≤ . . . ≤ α1 < 1 be an n-tuple of numbers whose

triangle sequence is (k, k, k, . . .). Then αj = αj1 and α1 is a root of the

algebraic equation

xn+1 + kxn + xn−1 + . . .+ x− 1 = 0.

Further if α is the real root of this equation that is between zero and one,

then (α, α2, . . . , αn) has purely periodic simplex sequence (k, k, k, . . .).

A similar result holds if the triangle sequence is purely periodic of period

length one of the form (ij, ij, ij, . . .).

We should also have

Conjecture 13 Let (α1, . . . , αn) be an n-tuple real numbers in 4 whose tri-

angle sequence is eventually periodic. Then each αj is algebraic of degree at
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most n. Finally, as a vector space over Q, the dimension of Q[α1, . . . , αn] is

at most n.

Finally a comment about notation. In the abstract it is claimed that that

we will express each n-tuple will be associated to a sequence of nonnegative

integers but in this section we look at sequences not just of nonnegative

integers but also of terms of the form (ij) with 1 ≤ i ≤ n − 2 and i <

j ≤ n. But there are only a finite number ( n(n − 2) + (n−2)(n−1)
2 ) of these

extra symbols. We could, if desired, order these symbols by nonnegative

numbers 0, 1, . . . , n(n−2)+ (n−2)(n−1)
2 and then shift the original nonnegative

integers by this amount. This will force the sequence to be one of nonnegative

integers, but the notation is clearly worse than the one chosen.
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