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Abstract
In this paper, we will begin by reviewing the triangle iteration. We

will then investigate the question of when a triangle sequence corresponds
to a unique ordered pair (α, β). It will be shown that certain classes of
triangle sequences, most importantly those that are bounded, do yield
unique ordered pairs. As a corollary to our work on uniqueness, we will
also show some clean relations dealing with the geometry of the partition
triangles.

1 Introduction

This paper will start with an overview of the standard triangle iteration as out-
lined in work by Garrity [1]. We will begin with the geometrical interpretation
of triangle sequences. We define an iteration T on the triangle

4 = {(x, y) : 1 ≥ x ≥ y > 0}.

This triangle is partitioned into an infinite set of disjoint subtriangles

4k = {(x, y) ∈ 4 : 1− x− ky ≥ 0 > 1− x− (k + 1)y},

where k is any nonnegative integer.
Given (α, β) ∈ 4k, define the map T : 4→ 4∪ {(x, 0) : 0 ≤ x ≤ 1} by

T (α, β) =
(
β

α
,

1− α− kβ
α

)
.

The triangle sequence is recovered from this iteration by keeping track of
the number of the triangle that the point is mapped into at each step. In other
words, if T k−1(α, β) ∈ 4ak , then the point (α, β) will have the triangle sequence
(a1, a2, . . . ).

We will recursively define a sequence of vectors as follows: Set C−2 =
(1, 0, 0), C−1 = (0, 1, 0) and C0 = (0, 0, 1). Let the components of Cn be denoted
by Cn = (pn, qn, rn). Then let

Cn = Cn−3 − Cn−2 − anCn−1.
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These Cn vectors can be thought of as integer vectors approximating the plane
x+αy+ βz = 0. We thus refer to the Cn vectors as approximation vectors. We
define positive numbers dn in the following manner:

dn = (1, α, β) · Cn.

These are interpreted as the distance from the vector Cn to the plane x+αy+
βz = 0. It is then easy to see that the following recursion relations hold:

dn = dn−3 − dn−2 − andn−1

pn = pn−3 − pn−2 − anpn−1

qn = qn−3 − qn−2 − anqn−1

rn = rn−3 − rn−2 − anrn−1

This paper will focus on the problem of discovering when a particular se-
quence (a1, a2, . . . ) corresponds to a unique pair (α, β), which has implications
in determining if α and β are cubic irrationals. We consider only the case of
infinite triangle sequences because it is trivial to show that all finite triangle
sequences correspond to an infinite number of points, and are thus not unique.
The proof of this assertion will appear in section 2, after appropriate notation
has been introduced.

There are two main ways to frame the question of uniqueness. The first
relies on vector algebra. We know that the vectors Cn are approaching the
plane x+αy+βz = 0. It is also easy to see that the Cn vectors are determined
completely by the sequence (a1, a2, . . . ). Thus, if it can be shown that the
cross product Cn × Cn+1 of two successive approximation vectors approaches
the vector (1, α, β), then the sequence is unique. In other words, if

lim
n→∞

Cn × Cn+1

||Cn × Cn+1||
= (1, α, β),

then the numbers α and β will be uniquely determined by the triangle sequence
(a1, a2, . . . ).

The second approach to understanding the uniqueness problem relies on the
geometry of the actual triangle iteration. We consider the original partitioning
of the triangle into an infinite disjoint union of subtriangles:

4 =
∞⋃
k=0

4k

It is clear from the definition of triangle sequences that 4k consists of all points
(α, β) whose triangle sequences have first term equal to k. In other words,

4k = {(x, y) ∈ 4 : a1 = k}.
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We can further partition each4k in a way similar to that in which we partitioned
4. Define 4k,l in the following way:

4k,l = {(x, y) ∈ 4k : T (x, y) ∈ 4l}.

Thus 4k,l is the set of all points in 4k that map to 4l. We can think of this
set in the following way:

4k,l = {(x, y) ∈ 4 : a1 = k and a2 = l}.

We can further partition the triangles in the same way. We define 4a1,a2,... ,an

to be the set of points (α, β) whose triangle sequences have (a1, a2, . . . , an) as
their first n terms. This gives us a method for investigating uniqueness. If we
can say that the set of points with the infinite triangle sequence (a1, a2, . . . )
consists of only one point, (α, β), then we can say that (α, β) is the unique
point with that triangle sequence. One way of investigating the set 4a1,a2,... is
to look at the limit of the sets 4a1,a2,... ,an as n approaches infinity.

Section 2 of this paper uses a geometric argument to show that there do,
in fact, exist certain infinite triangle sequences which correspond to an infinite
number of points (α, β). This will be demonstrated by showing that, in certain
cases, the set 4a1,a2,... consists of an entire line segment.

Section 3 is devoted to a development of the vector approach to the unique-
ness problem. We will define new notation for cross products of successive ap-
proximation vectors. We will then prove a new recursion relation and develop
algebraic conditions that guarantee uniqueness.

Section 4 uses the algebraic conditions developed in section 3 in order to
prove uniqueness of certain bounded triangle sequences. Specifically, we prove
that an infinite triangle sequence (a1, a2, . . . ) corresponds to a unique ordered
pair (α, β) for the case ai = A for all i and some positive integer A.

Section 5 explores the connections between the vector algebra and the geom-
etry of the partitioning of the triangles. We show that there is a clean relation
between the cross product vectors and the vertices of the partition triangles
4a1,a2,... ,an . We will also show that there is an interesting relationship between
the vertices of 4a1,a2,... ,an and the vertices of 4an,an−1,... ,a1 . These results are
interesting in their own right, but will be mainly used as technical lemmae in
proving the main theorem of section 6.

Section 6 deals with the case of proving the uniqueness of a larger class
of triangle sequences, including the entire bounded case. Specifically, we show
that, for any infinite sequence in which the integer C appears infinitely many
times, that sequence corresponds to a unique pair (α, β). We use both geometric
and algebraic arguments to prove this result.

2 Existence of Non-unique Triangle Sequences

In this section we show, using arguments based on the geometry of the triangle
iteration, that there exist infinite sets of points that all have the same infi-
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nite triangle sequence. We begin with some notation to describe the partition
triangles.

Definition 1 Define T−na1...an(α, β) to be the unique point (x, y) ∈ 4a1,... ,an such
that Tn(x, y) = (α, β).

Proposition 1 Given any finite triangle sequence (a1, . . . , an) there exists a
line segment such that all points on that segment have the sequence (a1, . . . , an).

Proof:
The set T−na1...an(I), where I is the interval (0, 1), is precisely the set of all

points with triangle sequence equal to (a1, . . . , an).

QED

Definition 2 For any finite sequence of nonnegative integers, a1 . . . an,
let d(a1, . . . an) = min{length(T−na1...an(I)), length(T−na1...an−1,an+1(I))}, where
I is the interval (0, 1).

In the figure below, we have

A = T−na1...an(I) a = T−na1...an+1(1, 0)
B = T−na1...an+1(I) b = T−na1...an(1, 0)
C = T−na1...an+1(1, 0) T−na1...an(1, 0) c = T−na1...an(0, 0)
m = T−na1...an+1( 1

l+1 , 0) n = T−na1...an+1(x, 0)

Note: 0 < 1
l+1 < x < 1

Figure 1: Triangle created by the consecutive partition lines T−na1...an(I) and
T−na1...an+1(I).
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Lemma 1 For any small ε > 0 and any sequence a1 . . . an of nonnegative inte-
gers, there exists a nonnegative integer l such that d(a1 . . . an, l) ≥ d(a1 . . . an)− ε.

Proof:
Case I: Consider the case where the angle at c is obtuse. Then all line

segments from b to a point on B will be longer than A. Since the endpoints of
consecutive partition lines are getting closer to c, we have:

d(a1 . . . an, l) = length(T−(n+1)
a1...an,l+1(I))

≥ length(T−na1...an(I))
≥ d(a1 . . . an)− ε

Therefore the lemma holds when c is obtuse.

Case II: Consider the case where the angle at c is acute. Consider a line
segment, N , in 4a1...an with the following properties:

(i) One endpoint is at T−na1...an(1, 0) (point b in Figure 1).
(ii) The other endpoint is at T−na1...an+1(x, 0) for some x ∈ (1, 0) (on line B
in Figure 1).
(iii) The length of the line segment is at least length(T−na1...an(I))− ε.
(iv) Given any m on the segment cn, M > N.

Properties (i) and (ii) will clearly be able to be satisfied. Since our line
segment, N , gets longer as the endpoint n approaches c, we know that we can
satisfy property (iii). By the above reasoning we also know that we will satisy
property (iv) when m gets sufficiently close to c.

Choose l ∈ Z+ so that 1
l+1 ≤ x. Then T−na1...an+1( 1

l+1 , 0), (point m in Figure
1) lies between c and n. So the line segment from b to m has length at least
length(T−na1...an(I))− ε = A− ε. But this line segment is also T−(n+1)

a1...an,l
(I).

Then, since length(T−(n+1)
a1...an,l+1(I)) > length(T−(n+1)

a1...an,l
(I)), we have:

d(a1 . . . an, l) = length(T−(n+1)
a1...an,l

(I))

≥ length(T−na1...an(I))− ε
≥ d(a1 . . . an)− ε

QED
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Theorem 1 There exist distinct points (α1, β1) and (α2, β2) in 4 with identical
infinite triangle sequences.

Proof:
Consider a triangle sequence constructed in the following manner:
Choose a1 so that d(a1) ≥ 1− 1

4 .
Choose a2 so that d(a1, a2) ≥ d(a1)− 1

8 ≥ 1− 1
4 −

1
8 .

Choose an so that d(a1 . . . an) ≥ d(a1 . . . an−1)− 1
2n+1 for n ≥ 2.

Our lemma guarantees that a sequence may be constructed in this way.

Then for all n, d(a1 . . . an) ≥ 1− 1
4 −

1
8 − . . .−

1
2n+1 >

1
2 . Therefore there

is some line segment of length 1
2 which is inside any triangle 4a1...an . Thus

every point on this line segment has the infinite triangle sequence (a1, a2, . . . ).

QED

3 Properties of Cross Products of Approxima-
tion Vectors

3.1 Motivation

We know that the approximation vectors Cn approach the plane given by x +
αy+βz = 0. Thus, it is reasonable to suppose that the cross-products Cn×Cn+1
would approach the vector (1, α, β), which is normal to the plane. Since the
approximation vectors are completely determined by the sequence, it is easy to
see that the relation

lim
n→∞

Cn × Cn+1

||Cn × Cn+1||
= (1, α, β),

implies that the pair (α, β) is completely determined by the sequence and thus
that the sequence is unique. The above limit relation is, in fact, equivalent to
the uniqueness of the sequence.

As was shown in section 2, since a triangle sequence does not necessarily
uniquely determine the pair (α, β), it is not always true that the cross product
approaches the normal vector (1, α, β). However, it is still useful to investigate
the properties of these cross products as an approach to answering questions of
uniqueness.
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3.2 Notation and Results

Definition 3 Let Xn = Cn × Cn+1. Set Xn = (xn, yn, zn).

Lemma 2 Xn+1 = Xn−2 + an+1Xn−1 +Xn

Proof:

Xn+1 = Cn+1 × Cn+2

= Cn+1 × (Cn−1 − Cn − an+2Cn+1)
= Cn+1 × Cn−1 + Cn × Cn+1

= (Cn−2 − Cn−1 − an+1Cn)× Cn−1 + Cn × Cn+1

= Cn−2 × Cn−1 + an+1Cn−1 × Cn + Cn × Cn+1

= Xn−2 + an+1Xn−1 +Xn

QED

Lemma 3 Xn ×Xn+1 = Cn+1

Proof:
We know that

xn = qnrn+1 − qn+1rn

yn = rnpn+1 − rn+1pn

zn = pnqn+1 − pn+1qn

Let us refer to the third component of Xn×Xn+1 as wn+1. Then we know that

wn+1 = xnyn+1 − ynxn+1

= (qnrn+1 − qn+1rn)(rn+1pn+2 − rn+2pn+1)− (rnpn+1 − rn+1pn)(qn+1rn+2 − qn+2rn+1)
= rn+1(pn+2qnrn+1 − qnpn+1rn+2 − rnqn+1pn+2) + rnrn+2qn+1pn+1

−rn+1(rn+1pnqn+2 − pnqn+1rn+2 − rnqn+2pn+1)− rnrn+2qn+1pn+1

= rn+1(pn+2qnrn+1 + pnqn+1rn+2 + rnqn+2pn+1 − rn+1pnqn+2 − qnpn+1rn+2 − rnqn+1pn+2)

Therefore, since det(Cn, Cn+1, Cn+2) = 1, wn+1 = rn+1.
Now, since Xn and Xn+1 are both perpendicular to Cn+1, we know that

Xn × Xn+1 = kCn+1 for some k. However, since wn+1 = rn+1, we know that
k = 1 and hence that Xn ×Xn+1 = Cn+1.

QED
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Corollary 1 det(Xn−2, Xn−1, Xn) = 1

Proof:

det(Xn−2, Xn−1, Xn) = Xn−2 · (Xn−1 ×Xn)
= Xn−2 · Cn
= (Cn−2 × Cn−1) · Cn
= det(Cn−2, Cn−1, Cn)
= 1

QED

Corollary 2 | yn−1
xn−1

− yn
xn
| = |rn|

xnxn−1

Proof:
From Lemma 3 we know that

|xnyn−1 − ynxn−1| = |rn|.

Dividing this expression by xnxn−1 yields∣∣∣∣ yn−1

xn−1
− yn
xn

∣∣∣∣ =
|rn|

xnxn−1
.

QED

Definition 4 Let αn be defined so that dn−3 − dn−2 − αndn−1 = 0.

Definition 5 Let C̃n = Cn−3 − Cn−2 − αnCn−1.

Definition 6 Let εn = αn − an.

From these definitions it should be clear that

an ≤ αn < an + 1

0 ≤ εn < 1

C̃n · (1, α, β) = 0

Additionally, if we let,

C̃n × C̃n+1 ≡ X̃n ≡ (x̃n, ỹn, z̃n).

Then,

α =
ỹn
x̃n

and

β =
z̃n
x̃n
.
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Lemma 4 X̃n = Xn + αnεnXn−1 + εnXn−2

Proof:

X̃n = C̃n × C̃n+1

= (Cn−3 − Cn−2 − αnCn−1)× (Cn−2 − Cn−1 − αn+1Cn)
= Cn−3 × Cn−2 − Cn−3 × Cn−1 − αn+1Cn−3 × Cn + Cn−2 × Cn−1

αn+1Cn−2 × Cn − αnCn−1 × Cn−2 + αnαn+1Cn−1 × Cn

We now compute the following:

Cn−3 × Cn−1 = Cn−3 × (Cn−4 − Cn−3 − an−1Cn−2)
= −Xn−4 − an−1Xn−3

Cn−3 × Cn = Cn−3 × (Cn−3 − Cn−2 − anCn−1)
= −Xn−3 − an(Cn−3 × Cn−1)
= −Xn−3 + anXn−4 + anan−1Xn−3

Cn−2 × Cn = Cn−2 × (Cn−3 − Cn−2 − anCn−1)
= −Xn−3 − anXn−2

Therefore we have that,

X̃n = Xn−3 +Xn−4 + an−1Xn−3 − αn+1(−Xn−3 + anXn−4 + anan−1Xn−3

Xn−2 + αn+1(−Xn−3 − anXn−2) + αnXn−2 + αnαn+1Xn−1

= αnαn+1Xn−1 + (αn + 1− αn+1an)Xn−2

+(1 + an−1 − αn+1anan−1)Xn−3 + (1− αn+1an)Xn−4

= (αnαn+1Xn−1 − (αn+1an)(Xn−2 + an−1Xn−3 +Xn−4)
+(Xn−2 + an−1Xn−3 +Xn−4) + anXn−2 +Xn−3 + εnXn−2

= αn+1εnXn−1 +Xn−1 + anXn−2 +Xn−3 + εnXn−2

= Xn + αn+1εnXn−1 + εnXn−2

QED

Lemma 5 | yn−1
xn−1

− α| ≤ |rn|+|rn−1|
xnxn−1

Proof:
We know that,

α =
ỹn
x̃n

=
yn + αn+1εnyn−1 + εnyn−2

xn + αn+1εnxn−1 + εnxn−2
.
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Hence,∣∣∣∣ yn−1

xn−1
− α

∣∣∣∣ =
yn−1

xn−1
− yn + αn+1εnyn−1 + εnyn−2

xn + αn+1εnxn−1 + εnxn−2

=
(xnyn−1 − ynxn−1) + (yn−1xn−2 − xn−1yn−2)εn

xn−1(xn + αn+1εnxn−1 + εnxn−2)

Therefore, since αn ≥ 0, εn ≥ 0 and xn ≥ 0, then∣∣∣∣ yn−1

xn−1
− α

∣∣∣∣ ≤ |rn−1εn − rn|
xnxn−1∣∣∣∣ yn−1

xn−1
− α

∣∣∣∣ ≤ |rn|+ |rn−1|
xnxn−1

QED

Lemma 6 | zn−1
xn−1

− β| ≤ |qn|+|qn−1|
xnxn−1

Proof:
The proof of this lemma is similar to the proof of the previous lemma.

QED

Lemma 7 If limn→∞
|rn|

xnxn−1
= 0 and limn→∞

|qn|
xnxn−1

= 0 then the triangle
sequence is unique.

Proof:
Since limn→∞

|rn|
xnxn−1

= 0, we know that

lim
n→∞

|rn−1|
xn−1xn−2

= 0

⇒ lim
n→∞

|rn−1|
xnxn−1

= 0

⇒ lim
n→∞

|rn|+ |rn−1|
xnxn−1

= 0

Similarily, since limn→∞
|qn|

xnxn−1
= 0, we know that

lim
n→∞

|qn−1|
xn−1xn−2

= 0

⇒ lim
n→∞

|qn−1|
xnxn−1

= 0

⇒ lim
n→∞

|qn|+ |qn−1|
xnxn−1

= 0
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Therefore by the two previous lemmas,

lim
n→∞

yn
xn

= α

lim
n→∞

zn
xn

= β

Hence, the triangle sequence is unique.

QED

4 Uniqueness of Certain Bounded Triangle Se-
quences

4.1 Review of Key Ideas

In section 3, we demonstrated that the relations

lim
n→∞

|rn|
xnxn−1

= 0

lim
n→∞

|qn|
xnxn−1

= 0

are equivalent to uniqueness. Now we will use this formulation to prove the
uniqueness of certain bounded infinte triangle sequences in the two main theo-
rems of this section.

4.2 Proof of the Theorem

We prove the following theorems by finding lower bounds on the growth of
xnxn−1 and upper bounds on the growth of rn and qn in order to show that the
appropriate limit relations hold.

Theorem 2 The infinite triangle sequence given by ai = A for all i is unique.

Proof:
First we shall bound rn and qn from above. We know that,

rn+1 = rn−2 − rn−1 − an+1rn

|rn+1| ≤ |rn−1|+ |rn−1|+A|rn|

Additionally,

qn+1 = qn−2 − qn−1 − an+1qn
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|qn+1| ≤ |qn−1|+ |qn−1|+A|qn|

Consider the case where A ≥ 1. We will show that |rn| ≤ (A+ 1)n.

|r0| = 1 ≤ (A+ 1)0

|r1| = A ≤ (A+ 1)1

|r2| = A2 − 1≤ (A+ 1)2

Suppose that |rk| ≤ (A+ 1)k for all k ≤ n. Then,

|rn+1| ≤ |rn−2|+ |rn−1|+A|rn|
≤ (A+ 1)n−2 + (A+ 1)n−1 +A(A+ 1)n

= (A+ 1)n((A+ 1)−2 + (A+ 1)−1 +A)

≤ (A+ 1)n+1

Note that the last of the above steps is justified since A ≥ 1 implies that
(A+ 1)−2 + (A+ 1)−1 ≤ 1. Therefore, by induction, |rn| ≤ (A+ 1)n for all n.

Similarily we will show that |qn| ≤ (A+ 1)n.

|q0| = 0 ≤ (A+ 1)0

|q1| = 1 ≤ (A+ 1)1

|q2| = A+ 1≤ (A+ 1)2

Suppose that |qk| ≤ (A+ 1)k for all k ≤ n. Then,

|qn+1| ≤ |qn−2|+ |qn−1|+A|qn|
≤ (A+ 1)n−2 + (A+ 1)n−1 +A(A+ 1)n

= (A+ 1)n((A+ 1)−2 + (A+ 1)−1 +A)

≤ (A+ 1)n+1

Therefore, by induction, |qn| ≤ (A+ 1)n for all n.
Consider the case where A = 0. We will show that |rn| ≤ (A+ 3

2 )n = ( 3
2 )n.

|r0| = 1≤
(

3
2

)0

|r1| = 0≤
(

3
2

)1

|r2| = 1≤
(

3
2

)2
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Suppose that |rk| ≤ ( 3
2 )k for all k ≤ n. Then,

|rn+1| ≤ |rn−2|+ |rn−1|

≤
(

3
2

)n−2

+
(

3
2

)n−1

=
(

3
2

)n((3
2

)−2

+
(

3
2

)−1
)

≤
(

3
2

)n+1

Therefore, by induction, |rn| ≤ ( 3
2 )n for all n.

Similarily, we will show that |qn| ≤ (A+ 3
2 )n = ( 3

2 )n.

|q0| = 0≤
(

3
2

)0

|q1| = 1≤
(

3
2

)1

|q2| = 1≤
(

3
2

)2

Suppose that |qk| ≤ ( 3
2 )k for all k ≤ n. Then,

|qn+1| ≤ |qn−2|+ |qn−1|

≤
(

3
2

)n−2

+
(

3
2

)n−1

=
(

3
2

)n((3
2

)−2

+
(

3
2

)−1
)

≤
(

3
2

)n+1

Therefore, by induction, |qn| ≤ ( 3
2 )n for all n.

This means that for all A ≥ 0 we have that

|rn+1| ≤
(
A+

3
2

)n+1

|qn+1| ≤
(
A+

3
2

)n+1

Next we will bound xn from below. We will show that xn ≥ C(A+ 2)n/2.

x0 = 1
x1 = 1 +A

x2 = 2 + 2A

x3 = 3 + 3A+A2
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Therefore,

x2 ≥ (A+ 2)x0

x3 ≥ (A+ 2)x1

Suppose that

xk ≥ (A+ 2)xk−2

xk+1 ≥ (A+ 2)xk−1

We will show that xk+2 ≥ (A+2)xk. Since the xn are increasing, we know that,

xk+2 = xk+1 +Axk + xk−1

= (xk +Axk−1 + xk−2) +Axk + xk−1

= (A+ 1)xk + (xk−1 +Axk−1 + xk−2)
≥ (A+ 1)xk + (xk−1 +Axk−2 + xk−3)
= (A+ 1)xk + xk

= (A+ 2)xk

Therefore, by induction we have that xn+2 ≥ (A+ 2)xn for all n. This implies
that xn ≥ C(A+ 2)n/2 for all n.

Finally we will show that |rn|
xnxn−1

and |qn|
xnxn−1

approach 0 as n grows without
bound.

Recall that,

|rn| ≤
(
A+

3
2

)n
|qn| ≤

(
A+

3
2

)n
xn ≥ C(A+ 2)n/2

xn−1 ≥ C(A+ 2)(n/2−1/2) ≥ D(A+ 2)n/2

Therefore, we have that

lim
n→∞

|rn|
xnxn−1

≤ lim
n→∞

(A+ 3
2 )n

CD(A+ 2)n
= 0

lim
n→∞

|qn|
xnxn−1

≤ lim
n→∞

(A+ 3
2 )n

CD(A+ 2)n
= 0

Thus, by Lemma 7, the triangle sequence ai = A is unique for all A ≥ 0.

QED

This establishes uniqueness for the very particular case where ai = A for
all i. Although we have made only partial progress toward an extension of
this method, we do believe that it can be extended to prove uniqueness of all
bounded triangle sequences.
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5 Relationships Between Cross Product Vectors
and Vertices of Partition Triangles

5.1 Overview

In order to understand the uniqueness question through the geometry of the
iteration, we need to investigate the partition triangles 4a1,... ,an . In particular,
we need to study the vertices of these triangles. In the following section, we
begin by stating and proving a lemma that relates the vertices of 4a1,... ,an to
those of 4an,... ,a1 . This result is interesting in its own right, but it is most
useful to us as a tool in proving the main theorem of the section. This main
theorem shows that there is a clean relation between the vertices of 4a1,... ,an

and the coordinates of the vectors Xn associated with the sequence (a1, . . . , an).
Finally, as a corollary to this theorem, we will construct a formula for the area
of 4a1,... ,an .

5.2 Proofs of the Relations

The main theorem of this paper concerns a direct relationship between the
vertices of the partition triangles and the coordinates of the cross product vectors
in three dimensions.

Lemma 8 (Reversing)
Let 4a1,a2,... ,an be the set of points whose triangle sequences have first n

terms equal to (a1, a2, . . . , an). Suppose the vertices of 4a1,a2,... ,an are written
as

T−na1,a2,... ,an(0, 0) = (
y00

x00
,
z00

x00
)

T−na1,a2,... ,an(1, 0) = (
y10

x10
,
z10

x10
)

T−na1,a2,... ,an(1, 1) = (
y11

x11
,
z11

x11
)

Then the vertices of 4an,an−1,... ,a1 are equal to

T−nan,an−1,... ,a1
(0, 0) = (

y00

y10
,
y11 − y10

y10
)

T−nan,an−1,... ,a1
(1, 0) = (

x00

x10
,
x11 − x10

x10
)

T−nan,an−1,... ,a1
(1, 1) = (

z00 + x00

z10 + x10
,
z11 − z10 + x11 − x10

z10 + x10
)
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Proof:
In order to prove this lemma, it is necessary to ensure that this notation for

the vertices is well-defined. It is easy to see that the vertices of the partition
triangles will always be of the form (u, v) where u and v are rational. Write (u, v)
in the form ( yx ,

z
x ) where x,y and z are integers and x is as small as possible.

This will ensure that (x, y, z) = 1 (unless ,of course, either u or v is zero).
The proof of the reversing lemma will proceed by induction on n, the length

of the sequence. We will begin by establishing the base cases where n = 0 and
n = 1.

Case n = 0
It is natural to consider the case n = 0 to be the entire triangle. We will

denote this triangle by 4. The vertices of 4 are

(0, 0)

(1, 0)

(1, 1)

It is easy to compute that(
0
1
,

1− 1
1

)
= (0, 0)

(
1
1
,

1− 1
1

)
= (1, 0)

(
0 + 1
0 + 1

,
1− 0 + 1− 1

0 + 1

)
= (1, 1)

This proves the lemma for the case n = 0, since 4 is the reverse of itself.
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Case n = 1
The vertices of 4a1 are

(1, 0)

(
1

a1 + 1
,

1
a1 + 1

)
(

1
a1 + 2

,
1

a1 + 2

)

It is again easy to compute that(
1
1
,

1− 1
1

)
= (1, 0)

(
1

a1 + 1
,

(a1 + 2)− (a1 + 1)
a1 + 1

)
=
(

1
a1 + 1

,
1

a1 + 1

)
(

0 + 1
1 + (a1 + 1)

,
1− 1 + (a1 + 2)− (a1 + 1)

1 + (a1 + 1)

)
=
(

1
a1 + 2

,
1

a1 + 2

)

This proves the lemma for the case n = 1, since 4a1 is the reverse of itself.

Now we assume that the theorem holds true for all triangle sequences of
length k with 0 ≤ k ≤ n−1 and show that the theorem holds true for sequences
of length n. The structure of the proof will be as follows. We will begin with
the coordinates of the vertices of 4a2,... ,an−1 and construct the coordinates of
the vertices of both 4a1,... ,an and 4an,... ,a1 . We will then demonstrate that the
appropriate relation occurs between the coordinates of the vertices of the two
triangles.

In order to construct the vertices, we need the following relation, which
follows easily from the definition of the mapping T .

T−1
k

(y
x
,
z

x

)
=
(

x

ky + z + x
,

y

ky + z + x

)
This notation refers to the preimage of the point ( yx ,

z
x ) in triangle k.

We also need to check that the operations of reversing and applying T−1
k

preserve the reduced fractional form of the vertex coordinates. This means
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that we need to check that, under one of these operations, a pair ( yx ,
z
x ) with

(x, y, z) = 1 will produce another pair ( y
′

x′ ,
z′

x′ ) with (x′, y′, z′) = 1. We need a
couple of propositions.

Proposition 2 If (x, y, z) = 1, then T−1
k ( yx ,

z
x ) = ( x

ky+x+z ,
y

ky+x+z ) is in re-
duced fractional form.

Proof:
Suppose ( x

ky+x+z ,
y

ky+x+z ) is not in reduced fractional form. Then there is
an positive integer m 6= 1 such that m|x, m|y and m|(ky+ x+ z). This implies
that m|z, which contradicts the assumption that (x, y, z) = 1. This proves the
proposition.

QED

Proposition 3 If the points (
y00

x00
,
z00

x00

)
(
y10

x10
,
z10

x10

)
(
y11

x11
,
z11

x11

)
are in reduced fractional form, then(

y00

y10
,
y11 − y10

y10

)
(
x00

x10
,
x11 − x10

x10

)
(
z00 + x00

z10 + x10
,
z11 − z10 + x11 − x10

z10 + x10

)
are in reduced fractional form.

Proof:
It suffices to show that

(y00, y10, y11−y10) = (x00, x10, x11−x10) = (z00+x00, z10+x10, z11−z10+x11−x10) = 1

This is equivalent to showing that

(y00, y10, y11) = (x00, x10, x11) = (z00 + x00, z10 + x10, z11 + x11) = 1

18



We claim that

det

 x00 x10 x11
y00 y10 y11
z00 z10 z11

 = 1

This implies that

det

 x00 x10 x11
y00 y10 y11

x00 + z10 x01 + z01 x11 + z11

 = 1

which proves the lemma.
To prove the claim, we use induction on n, the length of the sequence. We

define the vertices of 4a1,... ,ak in reduced fractional form as follows:(
y

(k)
00

x
(k)
00

,
z

(k)
00

x
(k)
00

)
(
y

(k)
10

x
(k)
10

,
z

(k)
10

x
(k)
10

)
(
y

(k)
11

x
(k)
11

,
z

(k)
11

x
(k)
11

)
and let

M (k) =

 x
(k)
00 x

(k)
10 x

(k)
11

y
(k)
00 y

(k)
10 y

(k)
11

z
(k)
00 z

(k)
10 z

(k)
11


We start with the case k=0. The vertices of 4 are:(

0
1
,

0
1

)
(

1
1
,

0
1

)
(

1
1
,

1
1

)
Then

detM (0) = det

 1 1 1
0 1 1
0 0 1

 = 1
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Now, suppose that detM (n−1) = 1. The matrix for Ta−1
n

is as follows:

[T−1
an ] =

 1 an 1
1 0 0
0 1 0


Thus det[T−1

an ] = 1 SinceM (n) = [T−1
an ]M (n−1) this implies that detM (n) = 1

This proves the claim, and thus completes the proof of the proposition.

QED

Now, we are ready to construct the proof of the reversing lemma. Let
4a2,... ,an−1 have vertices equal to(

y00

x00
,
z00

x00

)
(
y10

x10
,
z10

x10

)
(
y11

x11
,
z11

x11

)
Now, if we apply the mapping T−1

a1
to each of these points, we recover the

vertices of 4a1,... ,an−1 , which are calculated to be:(
x00

a1y00 + z00 + x00
,

y00

a1y00 + z00 + x00

)
(

x10

a1y10 + z10 + x10
,

y10

a1y10 + z10 + x10

)
(

x11

a1y11 + z11 + x11
,

y11

a1y11 + z11 + x11

)
These are the vertices of a triangle whose sequence has n−1 terms. We then

apply the reversing lemma to the vertices to yield the vertices of 4an−1,... ,a1 ,
shown below. (

x00

x10
,
x11 − x10

x10

)
(
a1y00 + z00 + x00

a1y10 + z10 + x10
,
a1y11 − a1y10 + z11 − z10 + x11 − x10

a1y10 + z10 + x10

)
(
y00 + a1y00 + z00 + x00

y10 + a1y10 + z10 + x10
,
y11 − y10 + a1y11 − a1y10 + z11 − z10 + x11 − x10

y10 + a1y10 + z10 + x10

)
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Applying T−1
an to these points yields the vertices of 4an,... ,a1 :(

x10

anx00 + x11
,

x00

anx00 + x11

)
(

a1y10 + z10 + x10

ana1y00 + anz00 + anx00 + a1y11 + z11 + x11
,

a1y00 + z00 + x00

ana1y00 + anz00 + anx00 + a1y11 + z11 + x11

)

(
y10 + a1y10 + z10 + x10

any00 + ana1y00 + anz00 + anx00 + y11 + a1y11 + z11 + x11
,

y00 + a1y00 + z00 + x00

any00 + ana1y00 + anz00 + anx00 + y11 + a1y11 + z11 + x11

)
Now we will similarly construct the vertices of 4a1,... ,an .
First, we use the reversing lemma to calculate the vertices of 4an−1,... ,a2 to

be: (
y00

y10
,
y11 − y10

y10

)
(
x00

x10
,
x11 − x10

x10

)
(
z00 + x00

z10 + x10
,
z11 − z10 + x11 + x10

z10 + x10

)
Applying T−1

an yields the vertices of 4an,... ,a2 :(
y10

any00 + y11
,

y00

any00 + y11

)
(

x10

anx00 + x11
,

x00

anx00 + x11

)
(

z10 + x10

anz00 + anx00 + z11 + x11
,

z00 + x00

anz00 + anx00 + z11 + x11

)
Now we apply the reversing lemma to calculate the vertices of 4a2,... ,an :(

y10

x10
,
z10

x10

)
(
any00 + y11

anx00 + x11
,
anz00 + z11

anx00 + x11

)
(
any00 + y00 + y11

anx00 + x00 + x11
,
anz00 + z00 + z11

anx00 + x00 + x11

)
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Finally, we apply T−1
a1

to yield the vertices of 4a1,... ,an :(
x10

a1y10 + x10 + z10
,

y10

a1y10 + x10 + z10

)
(

anx00 + x11

a1any00 + a1y11 + anz00 + z11 + anx00 + x11
,

any00 + y11

a1any00 + a1y11 + anz00 + z11 + anx00 + x11

)

(
x00 + anx00 + x11

a1y00 + a1any00 + a1y11 + x00 + anx00 + x11 + z00 + anz00 + z11
,

y00 + any00 + y11

a1y00 + a1any00 + a1y11 + x00 + anx00 + x11 + z00 + anz00 + z11

)
But, this is what you get if you apply the reversing lemma to 4an,... ,a1 .

Thus the lemma is true for sequences of length n and is thus true by induction
for all sequences.

QED

Now we are ready to prove the main theorem of this exposition:

Theorem 3 Let Xn = Cn×Cn+1 = (xn, yn, zn). Then the vertices of 4a1,... ,an

are given by:

T−na1,... ,an(0, 0) =
(
yn−1

xn−1
,
zn−1

xn−1

)

T−na1,... ,an(0, 1) =
(
yn
xn
,
zn
xn

)

T−na1,... ,an(1, 1) =
(
yn−2 + yn
xn−2 + xn

,
zn−2 + zn
xn−2 + xn

)
Proof:

This theorem is proven by induction on n, the number of terms in the se-
quence. We consider first the case n = 1.

The vertices of 4a1 are:

(1, 0)(
1

a1 + 1
,

1
a1 + 1

)
(

1
a1 + 2

,
1

a1 + 2

)
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We also know that:

X−1 = (x−1, y−1, z−1) = (1, 0, 0)

X0 = (x0, y0, z0) = (1, 1, 0)

X1 = (x1, y1, z1) = (a1 + 1, 1, 1)

We check that: (
y0

x0
,
z0

x0

)
=
(

1
1
,

0
1

)
= (1, 0)

(
y1

x1
,
z1

x1

)
=
(

1
a1 + 1

,
1

a1 + 1

)
(
y−1 + y1

x−1 + x1
,
z−1 + z1

x−1 + x1

)
=
(

0 + 1
(a1 + 1) + 1

,
0 + 1

(a1 + 1) + 1

)
=
(

1
a1 + 2

,
1

a1 + 2

)
Now we assume that the theorem holds for the vertices of all triangles with

sequences of length k with 1 ≤ k ≤ n − 1. Suppose the vertices of 4a1,... ,an−1

are (
yn−2

xn−2
,
zn−2

xn−2

)
(
yn−1

xn−1
,
zn−1

xn−1

)
(
yn−3 + yn−1

xn−3 + xn−1
,
zn−3 + zn−1

xn−3 + xn−1

)
We will then construct the vertices of 4a1,... ,an by applying the reversing

lemma and the map T−1
an .

First, the reversing lemma gives us the vertices of 4an−1,... ,a1(
yn−2

yn−1
,
yn−3

yn−1

)
(
xn−2

xn−1
,
xn−3

xn−1

)
(
zn−2 + xn−2

zn−1 + xn−1
,
zn−3 + xn−3

zn−1 + xn−1

)
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Next, we apply the map T−1
an to give the vertices of 4an,... ,a1(

yn−1

yn−1 + anyn−2 + yn−3
,

yn−2

yn−1 + anyn−2 + yn−3

)
(

xn−1

xn−1 + anxn−2 + xn−3
,

xn−2

xn−1 + anxn−2 + xn−3

)
(

xn−1 + zn−1

xn−1 + anxn−2 + xn−3 + zn−1 + anzn−2 + zn−3
,

xn−2 + zn−2

xn−1 + anxn−2 + xn−3 + zn−1 + anzn−2 + zn−3

)
By using the recursion relation Xn = Xn−1+anXn−2+Xn−3 we can simplify

this (
yn−1

yn
,
yn−2

yn

)
(
xn−1

xn
,
xn−2

xn

)
(
xn−1 + zn−1

xn + zn
,
xn−2 + zn−2

xn + zn

)
Finally, we apply the reversing lemma to these points to yield the vertices

of 4a1,... ,an . They are (
yn−1

xn−1
,
zn−1

xn−1

)
(
yn
xn
,
zn
xn

)
(
yn−2 + yn
xn−2 + xn

,
zn−2 + zn
xn−2 + xn

)
This shows that the theorem is true for sequences of length n. This proves

the theorem for all n.

QED

Corollary 3 The area of 4a1,... ,an is equal to 1
2xnxn−1(xn+xn−2) .

Proof:
We know from the previous theorem that the vertices of 4a1,... ,an are:(

yn−1

xn−1
,
zn−1

xn−1

)
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(
yn
xn
,
zn
xn

)
(
yn−2 + yn
xn−2 + xn

,
zn−2 + zn
xn−2 + xn

)
Therefore, we can calculate the area as one-half of the length of the cross-

product of two edge vectors. The edge vectors are calculated to be:

E1 =
(
yn−2 + yn
xn−2 + xn

− yn
xn
,
zn−2 + zn
xn−2 + xn

− zn
xn
, 0
)

E2 =
(
yn−1

xn−1
− yn
xn
,
zn−1

xn−1
− zn
xn
, 0
)

Combining the fractions yields:

E1 =
(
yn−2xn − xn−2yn
xn(xn−2 + xn)

,
zn−2xn − xn−2zn
xn(xn−2 + xn)

, 0
)

E1 =
(
yn−1xn − xn−1yn

xnxn−1
,
zn−1xn − xn−1zn

xnxn−1
, 0
)

Now, we know that yn−1xn−xn−1yn = −rn and that zn−1xn−xn−1zn = qn.
We can also calculate the other two numerators by using the recursion relation

Xn = Xn−1 + anXn−2 +Xn−3

yn−2xn − xn−2yn = yn−2(xn−1 + anxn−2 + xn−3)− xn−2(yn−1 + anyn−2 + yn−3)
= (yn−2xn−1 − xn−2yn−1) + (yn−2xn−3 − xn−2yn−3)
= −rn−1 + rn−2

Similarly, zn−2xn − xn−2zn = qn−1 − qn−2.
Thus we can rewrite E1 and E2 in the following way:

E1 =
(
−rn−1 + rn−2

xn(xn−2 + xn)
,
qn−1 − qn−2

xn(xn−2 + xn)
, 0
)

E2 =
(
−rn

xnxn−1
,

qn
xnxn−1

, 0
)
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Therefore,

E1 × E2 =
(

0, 0,
(qn)(−rn−1 + rn−2)− (−rn)(qn − qn−2)

x2
nxn−1(xn + xn−2)

)
=

(
0, 0,

(rnqn−1 − qnrn−1) + (qnrn−2 − rnqn−2)
x2
nxn−1(xn + xn−2)

)
=

(
0, 0,

(xn−1) + ((qn−3 − qn−2 − anqn−1)rn−2 − (rn−3 − rn−2 − anrn−1)qn−2)
x2
nxn−1(xn + xn−2)

)
=

(
0, 0,

xn−1 + (rn−2qn−3 − rn−3qn−2) + an(rn−1qn−2 − rn−2qn−1)
x2
nxn−1(xn + xn−2)

)
=

(
0, 0,

xn−1 + anxn−2 + xn−3

x2
nxn−1(xn + xn−2)

)
=

(
0, 0,

xn
x2
nxn−1(xn + xn−2)

)
=

(
0, 0,

1
xnxn−1(xn + xn−2)

)

Thus, Area of4a1,... ,an = 1
2 ||E1 × E2|| = 1

2xnxn−1(xn+xn−2)

QED

Corollary 4 The set of all points (α, β) with triangle sequence equal to (a1, a2, . . . )
consists of at most a line segment.

Proof:
It is easy to show that if you have any two points (α1, β1) and (α2, β2) that

have the same triangle sequence, then every point on the line segment connecting
them will also have that same triangle sequence. Now, suppose there are three
non-collinear points that all have the same triangle sequence. Clearly all points
on the triangular perimeter defined by these three points will have the same
triangle sequence. Then, given any point in the interior of this region we can
construct a line segment containing this point with endpoints on the perimeter.
This implies that there exists a region with nonzero area in which every point
has the same triangle sequence. However this contradicts corollary 3.

QED

6 Uniqueness of Triangle Sequences in Which
the Integer C Appears Infinitely Often

This section uses a geometric argument to show that, in the case that any
integer C appears infintely often in a triangle sequence (a1, a2, . . . ), the partition
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Figure 2: Triangle corresponding to Lemma 9

triangles4a1,... ,an converge to the unique point with that triangle sequence. We
begin with a couple of definitions.

Definition 7 For any vector, V = (v1, v2), let ‖ V ‖= max(|v1|, |v2|).

Definition 8 For any two points A and B, let −→AB be the vector from A to B.

Definition 9 Let the distance between two points A and B be defined as ‖ −→AB ‖.

Lemma 9 Let 4ABC be a triangle and let M and N be two points such that M
lies on the line segment between B and N . Then ‖ −−→AM ‖≥‖ −→AN ‖⇒‖ −−→AM ‖≤‖
−→
AB ‖.

Proof:
Since B, M and N are colinear and since M lies between N and B, then−−→

BM = a
−−→
MN for some a ≥ 0.

Let m1 be the largest component of the vector −−→AM . Without loss of gener-
ality, assume let m1 be non-negative. Then ‖ −−→AM ‖= m1. Now let x1, n1 and
b1 be the corresponding components of −−→MN , −→AN and −→AB respectively. Then,

‖ −−→AM ‖≥‖ −→AN ‖⇒ m1 ≥ n1

Therefore, since −→AN = −−→AM + −−→MN , we know that x1 ≤ 0. Additionally, since−→
AB = −−→AM −a−−→MN , we know that b1 ≥ m1. This implies that ‖ −→AB ‖≥‖ −−→AM ‖.

QED
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Lemma 10 Let 4ABC be a triangle with ‖ −→AC ‖≤‖ −→AB ‖, then for any point
M on the line segment between B and C, ‖ −−→AM ‖≤‖ −→AB ‖.

Proof:
Case1: ‖ −−→AM ‖≥‖ −→AC ‖
This case follows immediately by letting N = C in the previous lemma.
Case2: ‖ −−→AM ‖<‖ −→AC ‖
Since ‖ −→AC ‖≤‖ −→AB ‖ and ‖ −−→AM ‖<‖ −→AC ‖, then ‖ −−→AM ‖≤‖ −→AB ‖ as

desired.

QED

Definition 10 Let s0(n) be the length of the side connecting T−na1...an(0, 0) and
T−na1...an(1, 0).

Lemma 11 For any n ≥ 3 one of the following is true:

s0(n) ≤ s0(n− 1)
s0(n) ≤ s0(n− 2)
s0(n) ≤ s0(n− 3)

Proof:
Let

A = T−na1...an−1
(1, 0)

B = T−na1...an−1
(0, 0)

C = T−na1...an−1
(1, 1)

Analogously let,

A′ = T−na1...an−2
(1, 0)

B′ = T−na1...an−2
(0, 0)

C ′ = T−na1...an−2
(1, 1)

A′′ = T−na1...an−3
(1, 0)

B′′ = T−na1...an−3
(0, 0)

C ′′ = T−na1...an−3
(1, 1)

Where T−na1...a0
is the identity transformation. Note that B = A′ and B′ = A′′.

Case 1: ‖ −→AB ‖≥‖ −→AC ‖
By Lemma 10,

s0(n) ≤‖ −→AB ‖= s0(n− 1)

Note that s0(n) is the length of a line segment connents to A to a point on the
line segment between B and C.
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Case 2: ‖ −→AC ‖≥‖ −→AB ‖ and ‖ −→BC ‖≥‖ −→AC ‖.
Since −→BC is the longest side of 4ABC and s0(n) lies within 4ABC, then

s0(n) ≤‖ −→BC ‖. Note that A and C are both points on the line segment
connenting B′ and C ′ and that C lies between B′ and A. Therefore, by Lemma
9, since ‖ BC ‖≥‖ AC ‖,

s0(n− 2) =‖
−−→
A′B′ ‖≥‖

−−→
A′C ‖=‖ −→BC ‖≥ s0(n)

Case 3: ‖ −→BC ‖≤‖ −→AC ‖, ‖ −→AB ‖≤‖ −→AC ‖ and ‖ −−→B′A′ ‖≥‖ −−→B′C ′ ‖.
Recall that the side between B′ and C ′ contains the points A and C. There-

fore,

s0(n− 2) =‖
−−→
B′A′ ‖≥‖

−−→
B′C ′ ‖≥‖ −→AC ‖

We know that −→AC is the longest side of 4ABC, in which s0(n) lies. Therefore,

s0(n− 2) ≥‖ −→AC ‖≥ s0(n)

Case 4: ‖ −→BC ‖≤‖ −→AC ‖, ‖ −→AB ‖≤‖ −→AC ‖ and ‖ −−→B′A′ ‖≤‖ −−→B′C ′ ‖.
Note that A′ and C ′ are points on the line segment connecting B′′ and C ′′

with C ′ between B′′ and A′. Therefore by Lemma 9, since ‖ −−→B′C ′ ‖≥‖ −−→B′A′ ‖,

s0(n− 3) =‖
−−−→
A′′B′′ ‖≥‖

−−−→
A′′C ′ ‖=‖

−−→
B′C ′ ‖

Since −→AC is the longest side of 4ABC and since the side between B′ and C ′

contains the points A and C, then

s0(n− 3) ≥‖
−−→
B′C ′ ‖≥‖ −→AC ‖≥ s0(n)

QED

Definition 11 Let Fn = max( |rn−4|
xn−4xn−5

, |rn−3|
xn−3xn−4

, |rn−2|
xn−2xn−3

).

Definition 12 Let Gn = max( |qn−4|
xn−4xn−5

, |qn−3|
xn−3xn−4

, |qn−2|
xn−2xn−3

).

Lemma 12 If an = C and an−1 > C then |rn|
xnxn−1

≤ C2+3C+2
C2+4C+4Fn.

Proof:
To prove this lemma, we will bound |rn| from above in terms of max(|rn−2|, |rn−3|, |rn−4|)

and bound xnxn−1 from below in terms of xn−2xn−3. We will then use these
two bounds fact that Fn ≤ max(|rn−2|,|rn−3|,|rn−4|

xn−2xn−3
to bound |rn|

xnxn−1
from above

in terms of Fn.
Recall that

|rn| = |rn−3 − rn−2 − anrn−1|
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By making the substitution, rn−1 = rn−4 − rn−3 − an−1rn−2, we get,

|rn| = |rn−3 − rn−2 − anrn−4 + anrn−3 + anan−1rn−2| (1)

By using the triangle inequality and that an = C, we get,

|rn| ≤ (Can−1 + 2C + 2) max(|rn−2|, |rn−3|, |rn−4|)

Additionally,

xnxn−1 = (xn−3 + anxn−2 + xn−1)xn−1

By making the substitution, xn−1 = xn−4 + an−1xn−3 + xn−2, we get

xnxn−1 = ((xn−4 + an−1 + 1)xn−3 + (an + 1)xn−2)
(xn−4 + an−1xn−3 + xn−2) (2)

By dropping the xn−4 terms and using that an = C, we get

xnxn−1 ≥ ((an−1 + 1)xn−3 + (C + 1)xn−2)(an−1xn−3 + xn−2)

By dropping the x2
n−3 terms we get

xnxn−1 ≥ (Can−1 + 2an−1 + C + 2)xn−2xn−3

Therefore,

|rn|
xnxn−1

=
(Can−1 + 2C + 2) max(|rn−2|, |rn−3|, |rn−4|)

(Can−1 + 2an−1 + C + 2)xn−2xn−3

≤ Can−1 + 2C + 2
Can−1 + 2an−1 + C + 2

Fn

Since the derivative of the above expression with respect to an−1 is always
negative in the region an−1 ≥ C + 1, then the above expression achieves its
maximum in the region an−1 ≥ C + 1 when an−1 = C + 1. Therefore,

|rn|
xnxn−1

≤ C2 + 3C + 2
C2 + 4C + 4

Fn

QED
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Lemma 13 If an = C and an−1 > C then |qn|
xnxn−1

≤ C2+3C+2
C2+4C+4Gn

Proof:
The proof holds for qn because in the proof of the previous lemma, nothing is

used about rn except that it satisfies the recurrence, rn = rn−3− rn−2−anrn−1
which qn satisfies as well.

QED

Lemma 14 If an = C, an−1 > C and an+1 ≥ C, then |rn+1|
xn+1xn

≤ C2+3C+2
C2+4C+4Fn

Proof:
By replacing n with n+ 1 in Equation 1, we get

|rn+1| = | − an+1rn−3 + (an+1 + 1)rn−2 + (anan+1 − 1)rn−1|

By making the substitution, rn−1 = rn−4 − rn−3 − an−1rn−2, we get,

|rn+1| = |(anan+1 − 1)rn−4 + (1− an+1 − Can+1)rn−3

+ (an+1 + 1 + an−1 − Can+1an−1)rn−2| (3)

By using the triangle inequality and that an = C, we get

|rn+1| = (2Can+1 + an−1Can+1 + 2an+1 + an−1 + 3) max(|rn−2|, |rn−3|, |rn−4|)

Additionally, by replacing n with n+ 1 in Equation 2, we get

xn+1xn = (xn−3 + (an + 1)xn−2 + (an+1 + 1)xn−1)(xn−3 + anxn−2 + xn−1)

By making the substitution, xn−1 = xn−4 + an−1xn−3 + xn−2 we get

xn+1xn = ((an+1 + 1)x4 + (an−1 +an−1an+1 + 1)xn−3 + (an+1 +an+ 2)xn−2)
(xn−4 + (an−1 + 1)xn−3 + (an + 1)xn−2) (4)

By dropping the xn−4 terms and using that an = C, we get

xn+1xn ≥ ((an−1 + an−1an+1 + 1)xn−3 + (an+1 + C + 2)xn−2)((an−1 + 1)xn−3 + (C + 1)xn−2)

By dropping the x2
n−3 terms we get

xn+1xn ≥ (Can−1an+1 + 2Can−1 + Can+1 + C2 + 5C + 2an−1an+1 + 3an−1 + 2an+1 + 5)xn−2xn−3

Therefore,

|rn|
xn+1xn

≤ 2Can+1 + an−1Can+1 + 2an+1 + an−1 + 3
Can−1an+1 + 2Can−1 + Can+1 + C2 + 5C + 2an−1an+1 + 3an−1 + 2an+1 + 5

Fn
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Since the derivative of the above expression with respect to an−1 is always
negative when an−1 ≥ C + 1 and an+1 ≥ C, then the above expression achieves
its maximum in the region bounded by an−1 ≥ C + 1 and an+1 ≥ C when
an−1 = C + 1. Therefore,

|rn|
xn+1xn

≤ 3Can+1 + C2an+1 + C + 2an+1 + 4
C2an+1 + 3C2 + 4Can+1 + 10C + 4an+1 + 8

Fn

Since the derivative of the above expression with respect to an+1 is always pos-
itive when an+1 ≥ C, we can replace the right hand side of the above inequality
with its limit as an+1 →∞. Therefore,

|rn|
xn+1xn

≤ C2 + 3C + 2
C2 + 4C + 4

Fn

QED

Lemma 15 If an = C, an−1 > C and an+1 ≥ C then |qn+1|
xn+1xn

≤ C2+3C+2
C2+4C+4Gn

Proof:
The proof of this lemma is identical to the proof of the previous lemma with

all references to ri replaced by references to qi.

QED

Lemma 16 If an = C, an−1 > C, an+1 ≥ C and an+2 ≥ C then
|rn+2|

xn+2xn+1
≤ C2+3C+2

C2+4C+4Fn

Proof:
By replacing n with n+ 1 in Equation 3, we get

|rn+2| = |(an+2an+1 − 1)rn+3 − (an+2 + an+2an+1 − 1)rn−2 +
(an+2 + 1− an+2an+1an + an)rn−1|

By making the substitution, rn−1 = rn−4 − rn−3 − an−1rn−2, we get,

|rn+2| = |(an+2 + 1− an+2an+1C + C)rn−4 +
(an+2an+1 − an+2 − 2 + an+2an+1C − C)rn−3 −

(an+2 + an+2an+1 − 1 + an+2an−1 + an−1 − an+2an+1an−1C + Can−1)rn−2|

By using the triangle inequality and that an = C, we get

|rn+2 ≤ (an+2an+1an−1C + 2an+2an+1C + Can−1 + 2C + 2an+2an+1

+ an+2an−1 + an−1 + 3an+2 + 4) max(|rn−2|, |rn−3|, |rn−4|) (5)

32



Additionally, by replacing n with n+ 1 in Equation 4, we get

xn+2xn+1 = ((an+2+1)xn−3+(anan+2+an+1)xn−2+(an+1+an+2+2)xn−1)
(xn−3 + (an + 1)xn−2 + (an+1 + 1)xn−1)

By making the substitution, xn−1 = xn−4 + an−1xn−3 + xn−2, we get

xn+2xn+1 = ((an+1+an+2+2)xn−4+((an+2+1+an+1an−1+an+2an−1+2an−1)xn−3+
(an+1 + anan+2 + an+2 + an + 3)xn−2)((an+1 + 1)xn−4 +

(1 + an+1an−1 + an−1)xn−3 + (an + 2 + an+1)xn−2)

By dropping the xn−4 terms and using that an = C, we get

xn+2xn+1 ≥ ((an+2+1+an+1an−1+an+2an−1+2an−1)xn−3+(an+1+Can+2+an+2+C+3)xn−2)
((1 + an+1an−1 + an−1)xn−3 + (C + 2 + an+1)xn−2)

By dropping the x2
n−3 terms we get,

xn+2xn+1 ≥ an−1(Can+2an+1+2Can+1+2Can+2+3C+2an+2an+1+2a2
n+1+3an+2+8an+1+7)

+ (Can+2an+1 + C2an+2 + C2 + 6Can+2 + 2Can+1 + 7C +

a2
n+1 + 2an+2an+1 + 5an+2 + 7an+1 + 11)xn−2xn−3 (6)

Now let

J = an−1(Can+2an+1 + C + an+2 + 1) +
(2Can+2an+1 + 2C + 2an+2an+1 + 3an+2 + 4)

and

K = (an−1(Can+2an+1+2Can+1+2Can+2+3C+2an+2an+1+2a2
n+1+3an+2+8an+1+7)

+ (Can+2an+1 + C2an+2 + C2 + 6Can+2 + 2Can+1 + 7C +

a2
n+1 + 2an+2an+1 + 5an+2 + 7an+1 + 11)

Then Equation 5 can be rewritten as

|rn+2| ≤ J max(|rn−2|, |rn−3|, |rn−4|)

and Equation 6 can be rewritten as

xn+2xn+1 ≥ Kxn−2xn−3

Therefore,

|rn+2|
xn+2xn+1

≤ J

K
Fn
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Since the derivative of J
KFn with respect to an−1 is always negative when an−1 ≥

C+1, an+1 ≥ C and an+2 ≥ C, then the above expression achieves its maximum
in the region bounded by an−1 ≥ C + 1, an+1 ≥ C and an+2 ≥ C, when
an−1 = C + 1. By making the substitution an−1 = C + 1 in the expression J
we get

J1 = an+2(C2an+1 + 3Can+1 + (C + 2an+1 + 4) + C2 + 4C + 5)

By making the substitution an−1 = C + 1 in the expression K we get

K1 = an+2(C2an+1 + 3C2 + 4Can+1 + 11C + 4an+1 + 8) +

(2C2an+1 + 4C2 + 2Ca2
n+1 + 12Can+1 + 17C + 3a2

n+1 + 15an+1 + 18)

Therefore we have

|rn+2|
xn+2xn+1

≤ J1

K1
Fn

Since the derivative of J1
K1
Fn with respect to an+2 is always positive when an+1 ≥

C and an+2 ≥ C, then we can replace the right hand side of the above inequality
with its limit as an+2 →∞. Therefore,

|rn+2|
xn+2xn+1

≤ an+1C
2 + 3an+1C + 2an+1 + C + 4

an+1C2 + 4an+1C + 4an+1 + 3C2 + 11C + 8

Since the derivative of the above expression with respect to an+1 is always
positive when an+1 ≥ C, then we can replace the right hand side of the above
inequality with its limit as an+1 →∞. Therefore,

|rn+2|
xn+2xn+1

≤ C2 + 3C + 2
C2 + 4C + 4

QED

Lemma 17 If an = C, an−1 > C, an+1 ≥ C and an+2 ≥ C then |qn+2|
xn+2xn+1

≤
C2+3C+2
C2+4C+4Gn

Proof:
The proof of this lemma is identical to the proof of the previous lemma with

all references to ri replaced by references to qi.

QED
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Lemma 18 s0(n) =‖
(

rn
xnxn−1

, qn
xnxn−1

)
‖

Proof:
From Lemma 3 we know that:

T−na1...an(0, 0) =
(
yn−1

xn−1
,
zn−1

xn−1

)
T−na1...an(1, 0) =

(
yn
xn
,
zn
xn

)

Therefore,

s0(n) =‖
(
yn−1

xn−1
,
zn−1

xn−1

)
−
(
yn
xn
,
zn
xn

)
‖

=‖
(
ynxn−1 − xnyn−1

xnxn−1
,
znxn−1 − xnzn−1

xnxn−1

)
‖

=‖
(

rn
xnxn−1

,
qn

xnxn−1

)
‖

QED

Lemma 19 If an = C, an−1 > C, an+1 ≥ C and an+2 ≥ C then s0(i) ≤
C2+3C+2
C2+4C+4 max(s0(n− 2), s0(n− 3), s0(n− 4)) for all i ∈ {n, n+ 1, n+ 2}.

Proof:
From Lemma 18 we know that,

max(s0(n− 2), s0(n− 3), s0(n− 4)) = max
|rn−2|

xn−2xn−3
,
|rn−3|

xn−3xn−4
,
|rn−4|

xn−4xn−5
,

|qn−2|
xn−2xn−3

,
|qn−3|

xn−3xn−4
,
|qn−4|

xn−4xn−5
)

and

s0(i) = max
((

|ri|
xixi−1

, (
|qi|

xixi−1

))
From Lemmas 12 through 17, we know that for all i ∈ {n, n+ 1, n+ 2},

|ri|
xixi−1

≤ C2 + 3C + 2
C2 + 4C + 4

max(
|rn−2|

xn−2xn−3
,
|rn−3|

xn−3xn−4
,
|rn−4|

xn−4xn−5
)

|qi|
xixi−1

≤ C2 + 3C + 2
C2 + 4C + 4

max(
|qn−2|

xn−2xn−3
,
|qn−3|

xn−3xn−4
,
|qn−4|

xn−4xn−5
)
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Therefore, for all i ∈ {n, n+ 1, n+ 2},

s0(i) ≤ C2 + 3C + 2
C2 + 4C + 4

max(s0(n− 2), s0(n− 3), s0(n− 4))

QED

Lemma 20 If limn→∞ s0(n) = 0 then the triangle sequence (a1, a2, a3, . . . ) is
unique.

Proof:
From Lemma 18, we know that s0(n) = max

(
|rn|

xnxn−1
, |qn|
xnxn−1

)
. Therefore,

s0(n) ≥ |rn|
xnxn−1

s0(n) ≥ |qn|
xnxn−1

This that limn→∞ s0(n) = 0 implies

lim
n→∞

s0(n) = 0

lim
n→∞

s0(n) = 0

Hence by Lemma 7 we know that the triangle sequence is unique.

QED

Theorem 4 If any number occurs infinitely many times in a triangle sequence,
then that triangle sequence is unique.

Proof:
Given a triangle sequence (a1, a2, a3, . . . ), let C be the smallest term that

occurs infinitely many times in the sequence.
Case 1: The sequence contains only finitely many terms ai such that ai 6= C.
Then there must exist an aN such that for all ai where i > N the terms in

the sequence are C. By some Lemma 2, i the sequence (C,C,C, . . . ) is unique.
Therefore the triangle sequence (a1, a2, a3, . . . ) is unique.

Case 2: The sequence contains infinitely many terms ai such that ai 6= C.
By assumption, C is the smallest term that appears infinitely often in the

sequence. Therefore there are only finitely many terms less than C in the
triangle sequence. Let am be the last term in the sequence that is less than C.

Since there are infinitely many C terms in the sequence and infinitely many
terms greater than C, it is possible to select an infinite sequence of (N1, N2, N3, . . . )
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such that N1 > m + 1, and for all i, aNi = C and aNi−1 > C. Note that since
N1 > m+ 1, it follows immediately that aNi+1 ≥ C and aNi+1 ≥ C. Let

M = max(s0(N0 − 2), s0(N0 − 3), s0(N0 − 4))

We will show that for all n ≥ Ni,

s0(n) ≤
(
C2 + 3C + 2
C2 + 4C + 4

)i
M

First consider the base case where i = 0. By Lemma 11, for all s0(n) ≥ N0,

s0(n) ≤M
Now assume that for all n ≥ Nk,

s0(n) ≤
(
C2 + 3C + 2
C2 + 4C + 4

)k
M

Therefore, we know that

max(s0(Nk+1 − 2), s0(Nk+1 − 3), s0(Nk+1 − 4)) ≤
(
C2 + 3C + 2
C2 + 4C + 4

)k
M

So by Lemma 19 we know that

s0(Nk+1) ≤
(
C2 + 3C + 2
C2 + 4C + 4

)k+1

M

s0(Nk+1 + 1) ≤
(
C2 + 3C + 2
C2 + 4C + 4

)k+1

M

s0(Nk+1 + 2) ≤
(
C2 + 3C + 2
C2 + 4C + 4

)k+1

M

Hence by Lemma 11, we know that for all n ≥ Nk+1,

s0(n) ≤
(
C2 + 3C + 2
C2 + 4C + 4

)k+1

M

Therefore, by induction we have that for all i and for all n ≥ Ni

s0(n) ≤
(
C2 + 3C + 2
C2 + 4C + 4

)i
M

Therefore we know that

lim
n→∞

s0(n) ≤ lim
i→∞

(
C2 + 3C + 2
C2 + 4C + 4

)i
M

Therefore since C2+3C+2
C2+4C+4 < 1,

lim
n→∞

s0(n) = 0

Thus, by Lemma 20, the triangle sequence is unique.

QED
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