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Abstract

In this paper, we will begin by reviewing triangle sequences. One
interpretation of these sequences is as a sequence of approximation vectors
approaching the plane x+ αy + βz = 0. This paper establishes an upper
bound on the distance from the nth approximation vector to the plane
x+ αy + βz = 0.

1 Introduction

This paper will start with an overview of triangle sequences as outlined in work
by Garrity [2]. We begin with a geometrical interpretation of triangle sequences.
We define an iteration T on the triangle:

4 = (x, y) : 1 ≥ x ≥ y > 0.

This triangle is partitioned into an infinite set of disjoint subtriangles

4k = (x, y) ∈ 4 : 1− x− ky ≥ 0 > 1− x− (k + 1)y,

where k is any nonnegative integer.
Define the map T : 4→ 4∪ (x, 0) : 0 ≤ x ≤ 1 by

T (α, β) =
(
β

α
,

1− α− kβ
α

)
,

where (α, β) ∈ 4k.
The triangle sequence is recovered from this iteration by keeping track of

the number of the triangle that the point is mapped into at each step. In other
words, if T k−1(α, β) ∈ 4ak , then the point (α, β) will have the triangle sequence
(a1, a2, a3, . . . ).

We will recursively define a sequence of vectors as follows:
SetC−2 = (1, 0, 0), C−1 = (0, 1, 0), C0 = (0, 0, 1) and

Cn = Cn−3 − Cn−2 − anCn−1
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Let the components of Cn be denoted by Cn = (pn, qn, rn). These vectors Cn
can be thought of as integer vectors approximating the plane x+ αy + βz = 0.
We thus refer to the Cn vectors as approximation vectors. We define positive
numbers dn in the following manner:

dn = (1, α, β) · Cn

These numbers are an indication of close the approximation vectors are to the
plane x+αy+βz = 0. (In fact, these numbers differ from the Euclidean distance
to the plane by a constant factor). The rest of the paper concerns itself with
bounding dn from above. Let Xn = Cn × Cn+1 as defined in [1]. We shall
denote the components of Xn as (xn, yn, zn). In the next section we establish
the bound of:

dn <
1

xn+1

2 A Bound on dn

Let Nn be the matrix, xn−1 yn−1 zn−1
xn − xn−1 yn − yn−1 zn − zn−1
xn−2 yn−2 zn−2


We set Mn = (Cn−2, Cn−1, Cn). Recall from [2] that det(Mn) = Cn−2 · (Cn−1×
Cn) = 1.

Lemma 1 M−1
n = Nn

Proof: We know that

NnMn =

 xn−1 yn−1 zn−1
xn − xn−1 yn − yn−1 zn − zn−1
xn−2 yn−2 zn−2

pn−2 pn−1 pn
qn−2 qn−1 qn
rn−2 rn−1 rn


By performing the above multiplication, we get

NnMn =

 Cn−2 ·Xn−1 Cn−1 ·Xn−1 Cn ·Xn−1
Cn−2 ·Xn − Cn−2 ·Xn−1 Cn−1 ·Xn − Cn−1 ·Xn−1 Cn ·Xn − Cn ·Xn−1

Cn−2 ·Xn−2 Cn−1 ·Xn−2 Cn ·Xn−2


Since for all k, we know that Xk = Ck × Ck+1, then

Ck ·Xk = 0
Ck ·Xk−1 = 0
Ck ·Xk+1 = 1
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Additionally,

Cn−2 ·Xn = Cn−2 · (Xn−3 + anXn−2 +Xn−1)
Cn−2 ·Xn = Cn−2 ·Xn−3 + anCn−2 ·Xn−2 + Cn−2 ·Xn−1

Cn−2 ·Xn = 1

and

Cn ·Xn−2 = (Cn−3 − Cn−2 − anCn−1) ·Xn−2

Cn ·Xn−2 = Cn−3 ·Xn−2 − Cn−2 ·Xn−2 + anCn−1 ·Xn−2

Cn ·Xn−2 = 1

Therefore,

NnMn =

1 0 0
0 1 0
0 0 1


Hence, Nn = M−1

n

2

Lemma 2 The following three equalities are true:

1 = dnxn−2 + dn−2xn−1 + dn−1xn − dn−1xn−1

α = dnyn−2 + dn−2yn−1 + dn−1yn − dn−1yn−1

β = dnzn−2 + dn−2zn−1 + dn−1zn − dn−1zn−1

Proof: We know that

(1, α, β)Mn = (dn−2, dn−1, dn)

Therefore, since M−1
n = Nn,

(1, α, β) = (dn−2, dn−1, dn)Nn

Therefore,

1 = dnxn−2 + dn−2xn−1 + dn−1xn − dn−1xn−1

α = dnyn−2 + dn−2yn−1 + dn−1yn − dn−1yn−1

β = dnzn−2 + dn−2zn−1 + dn−1zn − dn−1zn−1
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Lemma 3

α =
yn−1 + βnyn−2 + αnyn − αnyn−1

xn−1 + βnxn−2 + αnxn − αnxn−1

β =
zn−1 + βnzn−2 + αnzn − αnzn−1

xn−1 + βnxn−2 + αnxn − αnxn−1
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Proof: From Lemma 2, we know that

1 = dn−2xn−1 + dnxn−2 + dn−1xn − dn−1xn−1

By recalling that αn = dn−1
dn−2

and βn = dn
dn−2

, we can divide through by dn−2 to
get

1
dn−2

= xn−1 + βnxn−2 + αnxn − αnxn−1

Or equivalently,

dn−2 =
1

xn−1 + βnxn−2 + αnxn − αnxn−1
(1)

Also from Lemma 2, we have that

α = dn−2yn−1 + dnyn−2 + dn−1yn − dn−1yn−1

β = dn−2zn−1 + dnzn−2 + dn−1zn − dn−1zn−1

Factoring out a dn−2 from the right hand sides yields

α = dn−2(yn−1 + βnyn−2 + αnyn − αnyn−1)
β = dn−2(zn−1 + βnzn−2 + αnzn − αnzn−1)

Substituting in for dn−2 from Equation (1), we get

α =
yn−1 + βnyn−2 + αnyn − αnyn−1

xn−1 + βnxn−2 + αnxn − αnxn−1

β =
zn−1 + βnzn−2 + αnzn − αnzn−1

xn−1 + βnxn−2 + αnxn − αnxn−1
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Theorem 1 dn <
1

xn+1

Proof: From Lemma 2, we know that

dn+1xn−1 + dn−1xn + dnxn+1 − dnxn = 1

Since dn+1 > 0 and xn−1 > 0, we can write the inequality:

dn−1xn + dnxn+1 − dnxn < 1

Since the dn terms are decreasing, we can substitute dn for dn−1 and maintain
the inequality:

dnxn + dnxn+1 − dnxn < 1

This implies that

dn <
1

xn+1
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