
HOMEWORK ASSIGNMENT # 1

MATH 211, FALL 2006, WILLIAMS COLLEGE

Abstract. These are the instructor’s solutions to the first home-
work.

1. Problem One

Describe, in your own words, the geometric way to multiply complex
numbers. Draw pictures and explain in full sentences. Integrate any
formulae you use into your text. [Hint: Try to write a small section of
textbook.]

1.1. Solution. We discussed this in class. One begins with the polar
coordinate representations of two complex numbers

z = r(cos θ + i sin θ) and w = r′(cos θ′ + i sin θ′).

Where r and r′ represent the distance from the origin, and θ and θ′

represent the counterclockwise angle from the positive real axis.
By DeMoivre’s theorem, we may write these as z = reiθ, w = r′eiθ′

and multiply to get zw = rr′ei(θ+θ′). This means that zw has distance
to the origin equal to the product of the distances for z and w, and
angle equal to the sum of the angles for z and w.

If we think of this as multiplying the vector z by the scalar w, the
effect is to combine two geometric operations. Scale the vector by the
size of w and then rotate it counterclockwise by an angle equal to that
of w.

I haven’t found a good way to put the pictures into this document.

2. Problem Two

Recall that Rn ⊂ Cn in a natural way. But there is also a way to
think of Cn as a real vector space. Thinking of C as ordered pairs of
real numbers, we can forget the complex multiplication and identify the
complex n-vector v = (a1 + ib1, . . . , an + ibn) with the real 2n-vector
v′ = (a1, b1, a2, b2, . . . , an, bn). This gives a view of Cn as a copy of R2n.
How are the notions of length in these two spaces related? That is,
how is ||v||Cn related to ||v′||R2n?
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2.1. Solution. The two notions of length agree. I’ll sketch how to see
this.

Let v, v′ be as stated in the problem. Then by definition

||v||Cn =
√

〈v, v〉 =
√

(a1 + ib1) · (a1 − ib1) + · · · + (an + ibn) · (an − ibn) .

(Note that I’ve already performed the conjugation from the Hermitian
product.) Doing the complex multiplication, or noting that z · z =
|z| = a2 + b2 for a complex number z = a + ib, we see that

||v||Cn =
√

a2
1 + b2

1 + · · · + a2
n + b2

n .

And it is not too hard to see that, by definition,

||v′||R2n =
√

〈v′, v′〉 =
√

a2
1 + b2

1 + · · · + a2
n + b2

n .

3. Problem Three

Describe the differences between the algebra of matrices and the
algebra of real (or complex) numbers. Highlight your discussion with
examples.

3.1. Solution. The structure of addition is basically the same. Addi-
tion is commutative, associative, and there are always additive inverses
(negatives). The differences come from the multiplication. Multiplica-
tion is still associative, and there is a distributive law (for both right
and left multiplication). There is still a ”multiplicative unit”: the
identity matrix I has AI = IA = A for every matrix A. However, mul-
tiplication is no longer commutative in general. For example, consider
the matrices

A =

(
2 0
0 1

)
, B =

(
1 1
0 1

)
.

It is not hard to compute that AB =

(
2 2
0 1

)
is not the same thing as

BA =

(
2 1
0 1

)
. The other main difference is that we may not always

”divide”. For numbers, we can always divide by a non-zero element.
That is, every non-zero number a has a multiplicative inverse a−1 such

that aa−1 = 1. Consider the non-zero matrix A =

(
1 0
0 0

)
. There is no

matrix B such that AB = BA = I. To see this, suppose B exists and

has the form B =

(
a b
c d

)
. Note that the lower left entry of both AB

and BA is always 0, no matter what a, b, c, d are, so it is impossible to
get AB = I or BA = I.
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4. Problem Four

List two linear algebra textbooks (other than our text) that can be
found in either Schow or the Math commons. Give title, author and
title of the first chapter.

4.1. Solution. There are a great many possible answers here.

5. Problem Five

Is it true that every real square matrix can be written as the sum of
symmetric matrix and a skew symmetric matrix? If so, show how to
do it. If false, give a counter example.

5.1. Solution. It is true. Given an arbitrary square matrix A consider
the matrices B = 1

2
(A + At) and C = 1

2
(A − At), where At denotes

the transpose of A. It is clear that A = B + C. Also, note that the
transpose of B is

Bt =
1

2
(A + At)t =

1

2
(At + (At)t).

Since (At)t = A, we see that Bt = B. Thus B is symmetric. A similar
check shows that Ct = −C, so that C is skew-symmetric.

6. Problem Six

(1) Suppose that L1, L2 are two hyperplanes in R2. What shape
can their intesection take? Give some representative examples
of the possibilities.

(2) Do the same for two hyperplanes L1, L2 in R3.
(3) Do the same for three hyperplanes L1, L2, L3 in R3.

6.1. Solution. We’ll tackle the three parts one at a time. It is really
helpful to draw pictures for these.

(1) A hyperplane in R2 is just a line, so the question asks for the
possible intersections of two lines. The possibilities are:

A single point: This happens when the lines have different
slope. For example, 2x + y = 1 and 3x + y = 1 intersect at
exactly the point x = 0, y = 1.

A line: This happens when the two lines coincide. For ex-
ample take L1 to be x + y = 2, L2 to be 2x + 2y = 4, and
their intersection is still all of the line x + y = 2.

Empty: This happens when the lines are parallel but dis-
tinct. For example, x + y = 0 and x + y = 2 never touch.

(2) A hyperplane in R3 is a two dimensional plane. The possibilities
are:
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A plane: If the two planes are equal, then we keep all the
points. For example, take L1 = L2 = {x + y + z = 0}.

A line: If the two planes are not parallel, we get a single line.
For example, the planes x + y + z = 0 and 2x + y + 2z = 0
intersect in the line described by {y = 0, z = −x}.

empty: This occurs when the planes are parallel, but dis-
tinct. For example, x + y + z = 0 and x + y + z = 24 do
not touch.

(3) For three planes in R3 we have a few more possibilities.
Empty: This happens often, as even if each pair of planes

intersects, the common intersection may be empty. For
example consider the planes x = 0, z = 0 and x + z = 1

A point: This happens when the pairs of planes intersect in
lines, and the lines intersect in a point. For example, take
x = 0, y = 0 and x + y + z = 1.

A line: This can happen even if all three planes are distinct.
For example, take the planes 2x + y = 0, x + y = 0 and
y − 2x = 0. These intersect in the “vertical” line {x =
0, y = 0}.

A plane: This happens when all three planes are the same
geometric object. Like x+2y−z = 3, 16x+32y−16y = 48,
and −5x − 10y + 5z = −15.


