
HOMEWORK ASSIGNMENT # 3

MATH 211, FALL 2006, WILLIAMS COLLEGE

Abstract. These are the instructor’s solutions.

1. Problem: On LU decompositions

This problem will lead you through understanding the LU decomposition
of a matrix. Your answer for this problem should show all of the work
indicated in detail. Consider the matrix

A =

2 4 2
1 5 2
4 −1 9

 .

• Working left to right and top to bottom, apply multiplications by
elementary matrices to put the matrix into row echelon form, U .
Keep careful track of the matrices you use, and the order you apply
them.

• Multiply the elementary matrices you used in the last step in the
correct order to write a matrix E, and write out the matrix equation
EA = U .

• In each elimination step from the first part of the problem, the num-
ber mji = −aji/aii you used to scale the coefficients is called a
multiplier. Write down the matrix

L =

 1 0 0
−m21 1 0
−m31 −m32 1

 .

• Show that E−1 = L.
• Conclude that A = L · U . Check this by performing the matrix

multiplication.
• Use the LU decomposition you just found to solve the system Ax = b

for b =
(
1 1 2

)t by the ”two backsolvings” method we discussed
in class.

Note: not every matrix has an LU decomposition. If one must switch
rows when doing the forward elimination, then on must keep track of these.
This results in a PLU decomposition, where the P is a permutation matrix,
which keeps track of the row switching.
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1.1. solution. One adds (-1/2)row 1 to row 2, adds (-2)row 1 to row 3 and
then (3)row 2 to row 3. So the multipliers are m21 = −1/2, m31 = −2 and
m32 = 3, and the matrix equation we have found is just

1 0 0
0 1 0
0 3 1

  1 0 0
0 1 0
−2 0 1

  1 0 0
−1/2 1 0

0 0 1

 2 4 2
1 5 2
4 −1 9

 =

2 4 2
0 3 1
0 0 8

 .

This is just EA = U for

E =

 1 0 0
−1/2 1 0
−3/2 3 1

 and U =

2 4 2
0 3 1
0 0 8

 .

It is then not difficult to check that

E−1 = L =

 1 0 0
1/2 1 0
2 −3 1

 ,

and that

A =

2 4 2
1 5 2
4 −1 9

 =

 1 0 0
1/2 10
2 −3 1

 ·

2 4 2
0 3 1
0 0 8

 = L · U.

To solve the equation Ax = b, we set y = Ux and use backsolving on
Ly = b to see that

y =

 1
1/2
3/2


and then again on Ux = y to see that

x =

5/48
5/48
3/16

 .
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2. Problem: Homogeneous and inhomogeneous equations

Consider the system of equations
x1 −2x2 +x3 +x4 +2x5 = 2
−x1 +3x2 +2x4 −2x5 = 2

+x2 +x3 +3x4 +4x5 = 4
x1 +2x2 +5x3 +13x4 +5x5 = 18

• Write the matrix version of this equation as Ax = b.
• Write the associated homogeneous equation in matrix form.
• Compute the null space of A.
• Show that b lies in the column space of A. To what matrix equa-

tion does this correspond? What particular solution of the original
system do you obtain?

• Write the vector form of the general solution to the original system.

2.1. solution. The matrix version of this equation is
1 −2 1 1 2
−1 3 0 2 −2
0 1 1 3 4
1 2 5 13 5




x1

x2

x3

x4

x5

 =


2
2
4
18

 .

Which has homogeneous form
1 −2 1 1 2
−1 3 0 2 −2
0 1 1 3 4
1 2 5 13 5




x1

x2

x3

x4

x5

 =


0
0
0
0

 .

The null space of A is the set of solutions to the homogeneous equation
above. Using row reduction, I found that this was equivalent to the system
with matrix 

1 0 3 7 0
0 1 1 3 0
0 0 0 0 1
0 0 0 0 0

 .

Which means that x3, x4 are free variables, x5 = 0 and x1 = −3x3 − 7x4,
x2 = −x3 − 3x4. Thus,

null(A) =

s


−3
−1
1
0
0

 + t


−7
−3
0
1
0

 | s, t ∈ R


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One way to see that b is in the column space of A is to note that b the
sum of the third and fourth columns of A. This corresponds to the matrix
equation


1 −2 1 1 2
−1 3 0 2 −2
0 1 1 3 4
1 2 5 13 5




0
0
1
1
0

 =


2
2
4
18

 ,

and to the fact that
(
0 0 1 1 0

)t is a particular solution to Ax = b.
The general solution to the inhomogeneous problem Ax = b is

S =




0
0
1
1
0

 + s


−3
−1
1
0
0

 + t


−7
−3
0
1
0

 | s, t ∈ R



3. Problem: On linear dependence

Are the following sets of vectors linearly dependent or linearly indepen-
dent?

(1)

1
1
1

,

1
2
3

,

2
3
1

.

(2)

−3
1
3

,

1
2
8

,

−3
4
18

.

(3)

 1
−2
1

,

2
1
0

,

3
0
1

.

3.1. solution. To do this: form the matrix with the given columns and
compute its null space. If it contains any non-zero vectors, then the set is
linearly dependent. If the null space only contains 0, then the set is linearly
independent. We find that all three sets are linearly independent.
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4. Problem: Determinants

Evaluate the following determinants.
(1) By passing to row echelon form:∣∣∣∣∣∣

2 −1 3
−1 2 −2
1 4 0

∣∣∣∣∣∣
(2) By expanding along a row or column and using cofactors:∣∣∣∣∣∣

3 3 1
0 1 2
1 2 3

∣∣∣∣∣∣
(3) By whatever method (or combination) seems appropriate:∣∣∣∣∣∣∣∣

1 1 1 3
0 3 1 1
1 0 2 2
−1 −1 −1 2

∣∣∣∣∣∣∣∣
4.1. solution. We compute that∣∣∣∣∣∣

2 −1 3
−1 2 −2
1 4 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 4/3
1 0 1/3
0 0 0

∣∣∣∣∣∣ = 0.

I expanded the second one along its second row:∣∣∣∣∣∣
3 3 1
0 1 2
1 2 3

∣∣∣∣∣∣ = −0
∣∣∣∣3 1
2 3

∣∣∣∣ + 1
∣∣∣∣3 1
1 3

∣∣∣∣ − 2
∣∣∣∣3 3
1 2

∣∣∣∣ = 8 − 6 = 2.

For the last one, I used row operations to simplify things and then ex-
panded along the last row and then the first column as shown below:∣∣∣∣∣∣∣∣

1 1 1 3
0 3 1 1
1 0 2 2
−1 −1 −1 2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1 1 3
0 3 1 1
0 −1 1 −1
0 0 0 5

∣∣∣∣∣∣∣∣
= −0 + 0 − 0 + 5

∣∣∣∣∣∣
1 1 1
0 3 1
0 −1 1

∣∣∣∣∣∣ = 5 · 1 ·
∣∣∣∣ 3 1
−1 1

∣∣∣∣ = 5 · 4 = 20


