HOMEWORK ASSIGNMENT \# 4

MATH 211, FALL 2006, WILLIAMS COLLEGE

Abstract. These are the instructor's solutions.

1. Problem: Cofactors and Cramer's rule

(1) Use the classical adjoint method to compute the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & 3 \\
4 & 2 & 1 \\
6 & -3 & 4
\end{array}\right)
$$

(2) Use Cramer's rule to solve the following system.

$$
\left\{\begin{array}{ccc}
x_{1}-2 x_{2}+x_{3}+x_{4} & =12 \\
-x_{1}+3 x_{2}+x_{3}+2 x_{4} & =12 \\
& +x_{2}+x_{3}+3 x_{4} & =0 \\
x_{1}+2 x_{2}+5 x_{3}+x_{4} & =96
\end{array}\right.
$$

1.1. solution. Computing cofactors, we see that the classical adjoint of A is

$$
\operatorname{adj}(A)=\left(\begin{array}{ccc}
11 & -13 & -5 \\
-10 & -10 & 10 \\
-24 & 12 & 0
\end{array}\right)
$$

So that

$$
A^{-1}=\left(\begin{array}{ccc}
-11 / 60 & 13 / 60 & 1 / 12 \\
1 / 6 & 1 / 6 & -1 / 6 \\
2 / 5 & -1 / 5 & 0
\end{array}\right)
$$

To solve the system, we apply Cramer's rule. The matrix form of the system is

$$
\left(\begin{array}{cccc}
1 & -2 & 1 & 1 \\
-1 & 3 & 1 & 2 \\
0 & 1 & 1 & 3 \\
1 & 2 & 5 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
12 \\
12 \\
0 \\
96
\end{array}\right)
$$

The solution is $x=\left(\begin{array}{c}-11 \\ -3 \\ 24 \\ -7\end{array}\right)$.

2. On elementary matrices

Show that any invertible square matrix can be written as a product of elementary matrices.
2.1. Solution. This is a consequence of the Gaussian elimination algorithm. The forward pass corresponds to writing an equation like

$$
E_{n} E_{n-1} \cdots E_{2} E_{1} A=U
$$

where each E_{i} is an elementary matrix. If A is nonsingular, then U is upper triangular, with nonzero entries down the diagonal. So, further multiplying by elementary matrices converts the pivots to 1 's, and eliminates the entries above the pivots, which is must be everything else above the diagonal. We get an equation like

$$
F_{k} F_{k-1} \cdots F_{1} E_{n} \cdots E_{1} A=I
$$

So, we invert all of the stuff on the left (working from left to right) to get that

$$
A=E_{1}^{-1} \cdots E_{n}^{-1} F_{1}^{-1} \cdots F_{k-1}^{-1} F_{k}^{-1}
$$

Thus, we have realized A as the product of inverses of elementary matrices. But the inverse of an elementary matrix is still an elementary matrix, because it just realizes the inverse row operation, which is still a row operation. The hard one to see this way is the elimination operation, but you can check this one with a direct computation.

3. On Singular matrices

Consider the system $A x=b$ for

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \text { and } b=\binom{4}{4}
$$

Show that the matrix A is singular. One one set of axes, draw a picture of the column space of A in \mathbb{R}^{2}. On another set of axes, draw a picture of the null space of A in \mathbb{R}^{2} and the solution set to $A x=b$. Reasoning from the pictures, find a vector b^{\prime} so that the system $A x=b^{\prime}$ has no solution. (Which set of axes should b^{\prime} live in?)

Can you describe what is happening from the viewpoint of intersecting hyperplanes?
3.1. solution. I'll describe the pictures as best I can. The column space is the line $y=x$. The null space is the line $x=0$, and the solution set to $A x=b$ is the line $x=4$. One vector which does not lie in the column space is $b^{\prime}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{t}$, so this vector suffices to answer the next question. Notice that b^{\prime} should be on the same set of axes as the column space.

From the point of view of intersecting hyperplanes: for a vector $b=\left(\begin{array}{ll}b_{1} & b_{2}\end{array}\right)^{t}$, the solution set to $A x=b$ is the intersection of the hyperplanes $\mathcal{H}_{1}=\left\{x=b_{1}\right\}$ and $\mathcal{H}_{2}=\left\{x=b_{2}\right\}$. These are parallel lines in \mathbb{R}^{2}. When they coincide $\left(b_{1}=b_{2}\right)$, we get a whole line's worth of solutions. When they are different $\left(b_{1} \neq b_{2}\right)$, we see that there is no solution.

