HOMEWORK ASSIGNMENT \# 4

MATH 211, FALL 2006, WILLIAMS COLLEGE

Abstract. This homework assignment has three problems on 1 page. It is due on Friday, October 6 in class. Please ask for help if you are stuck. Start this one early. Good Luck!

1. Problem: Cofactors and Cramer's rule

(1) Use the classical adjoint method to compute the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & 3 \\
4 & 2 & 1 \\
6 & -3 & 4
\end{array}\right)
$$

(2) Use Cramer's rule to solve the following system.

$$
\left\{\begin{array}{cccc}
x_{1} & -2 x_{2}+x_{3}+x_{4} & =12 \\
-x_{1}+3 x_{2}+x_{3}+2 x_{4} & =12 \\
& +x_{2}+x_{3}+3 x_{4} & =0 \\
x_{1}+2 x_{2}+5 x_{3}+x_{4} & =96
\end{array}\right.
$$

2. On ElEmENTARY MATRICES

Show that any invertible square matrix can be written as a product of elementary matrices.

3. On singular matrices

Consider the system $A x=b$ for

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \text { and } b=\binom{4}{4} .
$$

Show that the matrix A is singular. One one set of axes, draw a picture of the column space of A in \mathbb{R}^{2}. On another set of axes, draw a picture of the null space of A in \mathbb{R}^{2} and the solution set to $A x=b$. Reasoning from the pictures, find a vector b^{\prime} so that the system $A x=b^{\prime}$ has no solution. (Which set of axes should b^{\prime} live in?)

Can you describe what is happening from the viewpoint of intersecting hyperplanes?

