HOMEWORK ASSIGNMENT \# 6 SOLUTIONS

MATH 211, FALL 2006, WILLIAMS COLLEGE

Abstract. These are the instructor's solutions.

1. Rank

Find the rank of the following matrices

$$
A=\left(\begin{array}{ccccc}
1 & 3 & -2 & 5 & 4 \\
1 & 4 & 1 & 3 & 5 \\
1 & 4 & 2 & 4 & 3 \\
2 & 7 & -3 & 6 & 13
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 1 & 2 \\
4 & 5 & 5 \\
5 & 8 & 1 \\
-1 & -2 & 2
\end{array}\right)
$$

1.1. Solution. The matrices are row equivalent to the following reduced row echelon forms:

$$
A \sim\left(\begin{array}{ccccc}
1 & 0 & 0 & 22 & -21 \\
0 & 1 & 0 & -5 & 7 \\
0 & 0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad B \sim\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

so they both have rank 3 .

2. Reverse engineering

Find a homogeneous system of linear equations whose solution set is spanned by the vectors

$$
u_{1}=\left(\begin{array}{c}
1 \\
-2 \\
0 \\
3
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
4
\end{array}\right), \quad u_{3}=\left(\begin{array}{c}
1 \\
0 \\
-2 \\
5
\end{array}\right)
$$

2.1. Solution. The following is my argument. For a different solution, see pages 154-155 of your text. We must find equations to describe a subspace which is spanned by u_{1}, u_{2}, and u_{3}. We apply the row space algorithm to find a nicer spanning set (hoping it will be easier to work with). We see

$$
\left(\begin{array}{cccc}
1 & -2 & 0 & 3 \\
1 & -1 & -1 & 4 \\
1 & 0 & -2 & 5
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & -2 & 5 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

[^0]Thus, our subspace is

$$
\mathcal{S}=\left\{s\left(\begin{array}{c}
1 \\
0 \\
-2 \\
5
\end{array}\right)+t\left(\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right)\right\}=\left\{\left(\begin{array}{c}
s \\
t \\
-2 s-t \\
5 s+t
\end{array}\right)\right\} .
$$

Recalling that the parameters s and t should come from free variables, we see that x_{1} and x_{2} are free variables, and our system must satisfy equations $x_{3}=-2 x_{1}-x_{2}$ and $x_{4}=5 x_{1}+x_{2}$. That is, our system is

$$
\left\{\begin{array}{llll}
2 x_{1} & +x_{2} & +x_{3} & =0 \\
5 x_{1} & +x_{2} & & -x_{4}=0
\end{array}\right.
$$

3. Rows and Columns

Find a basis for the row space and a basis for the column space for each of these matrices.

$$
A=\left(\begin{array}{ccccc}
0 & 0 & 3 & 1 & 4 \\
1 & 3 & 1 & 2 & 1 \\
3 & 9 & 4 & 5 & 2 \\
4 & 12 & 8 & 8 & 7
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
1 & 2 & 1 & 0 & 1 \\
1 & 2 & 2 & 1 & 3 \\
3 & 6 & 5 & 2 & 7 \\
2 & 4 & 1 & -1 & 0
\end{array}\right)
$$

3.1. Solution. Fortunately, both computing a basis for the row space and a basis for the column space require putting the matrix into reduced row echelon form. For A we see that

$$
A \sim\left(\begin{array}{ccccc}
1 & 3 & 0 & 0 & -13 / 4 \\
0 & 0 & 1 & 0 & 3 / 4 \\
0 & 0 & 0 & 1 & 7 / 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

So we deduce that

$$
\operatorname{row}(A)=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
3 \\
0 \\
0 \\
-13 / 4
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
3 / 4
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
7 / 4
\end{array}\right)\right\}
$$

and that

$$
\operatorname{col}(A)=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
1 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
3 \\
1 \\
4 \\
8
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
5 \\
8
\end{array}\right)\right\} .
$$

Similarly, the reduced row echelon form of B is

$$
B \sim\left(\begin{array}{ccccc}
1 & 2 & 0 & -1 & -1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

So we deduce that

$$
\operatorname{row}(B)=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
2 \\
0 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
2
\end{array}\right)\right\},
$$

and that

$$
\operatorname{col}(B)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
3 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
5 \\
1
\end{array}\right)\right\} .
$$

4. General functions

Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions and that $g \circ f:$ $A \rightarrow C$ is surjective. Is it necessary that f is surjective? Is it necessary that g is surjective? If either function must be surjective, give a proof that this is true. If not, give an example of a pair of functions f and g for which the relevant function is not surjective, but the composition still is.

4.1. Solution.

(1) First, we show that $g \circ f$ is surjective. Let x be an element of C. We must produce an element a of A such that $g \circ f(a)=c$.

Since g is surjective, there exists a point $b \in B$ such that $g(b)=c$. Since f is surjective, there exists a point $a \in A$ such that $f(a)=b$.

But now $g \circ f(a)=g(f(a))=g(b)=c$. So we are done.
(2) If $g \circ f$ is surjective, then so must be g, but not necessarily f. To see that f need not be surjective, consider the example of

$$
f:[0,1] \rightarrow[0,1], g:[0,1] \rightarrow[0,1]
$$

defined by $f(x)=x / 2$ and

$$
g(x)= \begin{cases}2 x, & 0 \leq x \leq 1 / 2 \\ 1, & 1 / 2<x \leq 1\end{cases}
$$

We now prove that g must be surjective (by the contrapositive). Suppose that g is not surjective. Then there is a point $c \in C$ such that $g(B)$ does not contain c. But then $(g \circ f)(A) \subseteq g(B)$ does not contain c, and $g \circ f$ is not surjective. This contradicts our hypothesis, so we deduce that g must also be surjective.

5. Linear functions

Let V be the vector space of all smooth (i.e. infinitely many times differentiable) functions $\mathbb{R} \rightarrow \mathbb{R}, W$ be the vector space of all polynomials with real coefficients in the variable t, and W_{3} the vector space of all polynomials of degree at most three in the variable t.

Show that the following mappings are linear maps, and find their kernels and ranges.
(1) $T: W \rightarrow W$ defined by $T(p)=t^{2} \cdot p$.
(2) $S: W_{3} \rightarrow W_{3}$ defined by $S(p)=t \cdot p^{\prime}$, where p^{\prime} is the derivative of p with respect to t,
(3) $T_{3, \pi}: V \rightarrow W_{3}$ defined by setting $T_{3}(f)$ equal to the third degree Taylor polynomial of f centered at the point $a=\pi$.
5.1. Solution. It is straightforward to check that these mappings preserve taking linear combinations. The subspaces asked for are as follows: For T,

$$
\operatorname{ker}(T)=\{0\}, \quad \operatorname{im}(T)=\operatorname{span}\left\{t^{2}, t^{3}, t^{4}, \ldots\right\} .
$$

For S,

$$
\operatorname{ker}(T)=\operatorname{span}\{1\}, \quad \operatorname{im}(T)=\operatorname{span}\left\{t, t^{2}, t^{3}, t^{4}, \ldots\right\}
$$

For $T_{3, \pi}$
$\operatorname{ker}(T)=\left\{\right.$ functions f such that $\left.f(\pi)=f^{\prime}(\pi)=f^{\prime \prime}(\pi)=f^{\prime \prime \prime}(\pi)=0\right\}, \quad \operatorname{im}(T)=W_{3}$.

[^0]: Date: October 31, 2006.

