
HOMEWORK ASSIGNMENT # 6 SOLUTIONS

MATH 211, FALL 2006, WILLIAMS COLLEGE

Abstract. These are the instructor’s solutions.

1. Rank

Find the rank of the following matrices

A =


1 3 −2 5 4
1 4 1 3 5
1 4 2 4 3
2 7 −3 6 13

 , B =


1 1 2
4 5 5
5 8 1
−1 −2 2

 .

1.1. Solution. The matrices are row equivalent to the following reduced
row echelon forms:

A ∼


1 0 0 22 −21
0 1 0 −5 7
0 0 1 1 −2
0 0 0 0 0

 , B ∼


1 0 0
0 1 0
0 0 1
0 0 0

 ,

so they both have rank 3.

2. Reverse engineering

Find a homogeneous system of linear equations whose solution set is
spanned by the vectors

u1 =


1
−2
0
3

 , u2 =


1
−1
−1
4

 , u3 =


1
0
−2
5

 .

2.1. Solution. The following is my argument. For a different solution, see
pages 154-155 of your text. We must find equations to describe a subspace
which is spanned by u1, u2, and u3. We apply the row space algorithm to
find a nicer spanning set (hoping it will be easier to work with). We see1 −2 0 3

1 −1 −1 4
1 0 −2 5

 ∼

1 0 −2 5
0 1 −1 1
0 0 0 0

 .
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Thus, our subspace is

S =

s


1
0
−2
5

 + t


0
1
−1
1


 =




s
t

−2s− t
5s + t


 .

Recalling that the parameters s and t should come from free variables, we
see that x1 and x2 are free variables, and our system must satisfy equations
x3 = −2x1 − x2 and x4 = 5x1 + x2. That is, our system is{

2x1 +x2 +x3 = 0
5x1 +x2 −x4 = 0

3. Rows and Columns

Find a basis for the row space and a basis for the column space for each
of these matrices.

A =


0 0 3 1 4
1 3 1 2 1
3 9 4 5 2
4 12 8 8 7

 , B =


1 2 1 0 1
1 2 2 1 3
3 6 5 2 7
2 4 1 −1 0


3.1. Solution. Fortunately, both computing a basis for the row space and
a basis for the column space require putting the matrix into reduced row
echelon form. For A we see that

A ∼


1 3 0 0 −13/4
0 0 1 0 3/4
0 0 0 1 7/4
0 0 0 0 0

 ,

So we deduce that

row(A) = span




1
3
0
0

−13/4

 ,


0
0
1
0

3/4

 ,


0
0
0
1

7/4


 ,

and that

col(A) = span




0
1
3
4

 ,


3
1
4
8

 ,


1
2
5
8


 .

Similarly, the reduced row echelon form of B is

B ∼


1 2 0 −1 −1
0 0 1 1 2
0 0 0 0 0
0 0 0 0 0

 .
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So we deduce that

row(B) = span




1
2
0
−1
−1

 ,


0
0
1
1
2


 ,

and that

col(B) = span




1
1
3
2

 ,


1
2
5
1


 .

4. General functions

Suppose that f : A → B and g : B → C are functions and that g ◦ f :
A → C is surjective. Is it necessary that f is surjective? Is it necessary that
g is surjective? If either function must be surjective, give a proof that this
is true. If not, give an example of a pair of functions f and g for which the
relevant function is not surjective, but the composition still is.

4.1. Solution.

(1) First, we show that g ◦f is surjective. Let x be an element of C. We
must produce an element a of A such that g ◦ f(a) = c.

Since g is surjective, there exists a point b ∈ B such that g(b) = c.
Since f is surjective, there exists a point a ∈ A such that f(a) = b.

But now g ◦ f(a) = g(f(a)) = g(b) = c. So we are done.
(2) If g ◦ f is surjective, then so must be g, but not necessarily f . To

see that f need not be surjective, consider the example of

f : [0, 1] → [0, 1], g : [0, 1] → [0, 1]

defined by f(x) = x/2 and

g(x) =
{

2x, 0 ≤ x ≤ 1/2,
1, 1/2 < x ≤ 1.

We now prove that g must be surjective (by the contrapositive).
Suppose that g is not surjective. Then there is a point c ∈ C such
that g(B) does not contain c. But then (g ◦ f)(A) ⊆ g(B) does not
contain c, and g◦f is not surjective. This contradicts our hypothesis,
so we deduce that g must also be surjective.
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5. Linear functions

Let V be the vector space of all smooth (i.e. infinitely many times differ-
entiable) functions R → R, W be the vector space of all polynomials with
real coefficients in the variable t, and W3 the vector space of all polynomials
of degree at most three in the variable t.

Show that the following mappings are linear maps, and find their kernels
and ranges.

(1) T : W → W defined by T (p) = t2 · p.
(2) S : W3 → W3 defined by S(p) = t · p′, where p′ is the derivative of p

with respect to t,
(3) T3,π : V → W3 defined by setting T3(f) equal to the third degree

Taylor polynomial of f centered at the point a = π.

5.1. Solution. It is straightforward to check that these mappings preserve
taking linear combinations. The subspaces asked for are as follows: For T ,

ker(T ) = {0}, im(T ) = span{t2, t3, t4, . . .}.
For S,

ker(T ) = span{1}, im(T ) = span{t, t2, t3, t4, . . .}.
For T3,π

ker(T ) = {functions f such thatf(π) = f ′(π) = f ′′(π) = f ′′′(π) = 0}, im(T ) = W3.


