HOMEWORK ASSIGNMENT # 6

MATH 211, FALL 2006, WILLIAMS COLLEGE

ABSTRACT. This assignment has five problems on two pages. It is due on Wednesday, November 1 in class. Talk with me if you have difficulty. Good Luck!

1. Rank

Find the rank of the following matrices

$$A = \begin{pmatrix} 1 & 3 & -2 & 5 & 4 \\ 1 & 4 & 1 & 3 & 5 \\ 1 & 4 & 2 & 4 & 3 \\ 2 & 7 & -3 & 6 & 13 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 2 \\ 4 & 5 & 5 \\ 5 & 8 & 1 \\ -1 & -2 & 2 \end{pmatrix}.$$

2. Reverse engineering

Find a homogeneous system of linear equations whose solution set is spanned by the vectors

$$u_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 4 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 1 \\ 0 \\ -2 \\ 5 \end{pmatrix}.$$

3. Rows and Columns

Find a basis for the row space and a basis for the column space for each of these matrices.

$$A = \begin{pmatrix} 0 & 0 & 3 & 1 & 4 \\ 1 & 3 & 1 & 2 & 1 \\ 3 & 9 & 4 & 5 & 2 \\ 4 & 12 & 8 & 8 & 7 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 1 & 2 & 2 & 1 & 3 \\ 3 & 6 & 5 & 2 & 7 \\ 2 & 4 & 1 & -1 & 0 \end{pmatrix}$$

Date: October 31, 2006.

4. General functions

Suppose that $f: A \to B$ and $g: B \to C$ are functions and that $g \circ f: A \to C$ is surjective. Is it necessary that f is surjective? Is it necessary that g is surjective? If either function must be surjective, give a proof that this is true. If not, give an example of a pair of functions f and g for which the relevant function is not surjective, but the composition still is.

5. Linear functions

Let V be the vector space of all smooth (i.e. infinitely many times differentiable) functions $\mathbb{R} \to \mathbb{R}$, W be the vector space of all polynomials with real coefficients in the variable t, and W_3 the vector space of all polynomials of degree at most three in the variable t.

Show that the following mappings are linear maps, and find their kernels and ranges.

(1) $T: W \to W$ defined by $T(p) = t^2 \cdot p$.

- (2) $S: W_3 \to W_3$ defined by $S(p) = t \cdot p'$, where p' is the derivative of p with respect to t,
- (3) $T_{3,\pi}: V \to W_3$ defined by setting $T_3(f)$ equal to the third degree Taylor polynomial of f centered at the point $a = \pi$.