HOMEWORK ASSIGNMENT \# 6

MATH 211, FALL 2006, WILLIAMS COLLEGE

Abstract

This assignment has five problems on two pages. It is due on Wednesday, November 1 in class. Talk with me if you have difficulty. Good Luck!

1. RANK

Find the rank of the following matrices

$$
A=\left(\begin{array}{ccccc}
1 & 3 & -2 & 5 & 4 \\
1 & 4 & 1 & 3 & 5 \\
1 & 4 & 2 & 4 & 3 \\
2 & 7 & -3 & 6 & 13
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 1 & 2 \\
4 & 5 & 5 \\
5 & 8 & 1 \\
-1 & -2 & 2
\end{array}\right) .
$$

2. Reverse engineering

Find a homogeneous system of linear equations whose solution set is spanned by the vectors

$$
u_{1}=\left(\begin{array}{c}
1 \\
-2 \\
0 \\
3
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
4
\end{array}\right), \quad u_{3}=\left(\begin{array}{c}
1 \\
0 \\
-2 \\
5
\end{array}\right) .
$$

3. Rows and Columns

Find a basis for the row space and a basis for the column space for each of these matrices.

$$
A=\left(\begin{array}{ccccc}
0 & 0 & 3 & 1 & 4 \\
1 & 3 & 1 & 2 & 1 \\
3 & 9 & 4 & 5 & 2 \\
4 & 12 & 8 & 8 & 7
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
1 & 2 & 1 & 0 & 1 \\
1 & 2 & 2 & 1 & 3 \\
3 & 6 & 5 & 2 & 7 \\
2 & 4 & 1 & -1 & 0
\end{array}\right)
$$

[^0]
4. General functions

Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions and that $g \circ f:$ $A \rightarrow C$ is surjective. Is it necessary that f is surjective? Is it necessary that g is surjective? If either function must be surjective, give a proof that this is true. If not, give an example of a pair of functions f and g for which the relevant function is not surjective, but the composition still is.

5. Linear functions

Let V be the vector space of all smooth (i.e. infinitely many times differentiable) functions $\mathbb{R} \rightarrow \mathbb{R}$, W be the vector space of all polynomials with real coefficients in the variable t, and W_{3} the vector space of all polynomials of degree at most three in the variable t.

Show that the following mappings are linear maps, and find their kernels and ranges.
(1) $T: W \rightarrow W$ defined by $T(p)=t^{2} \cdot p$.
(2) $S: W_{3} \rightarrow W_{3}$ defined by $S(p)=t \cdot p^{\prime}$, where p^{\prime} is the derivative of p with respect to t,
(3) $T_{3, \pi}: V \rightarrow W_{3}$ defined by setting $T_{3}(f)$ equal to the third degree Taylor polynomial of f centered at the point $a=\pi$.

[^0]: Date: October 31, 2006.

