
SECOND EXAM SOLUTIONS

MATH 211, WILLIAMS COLLEGE, FALL 2006

Abstract. These are the instructor’s solutions for the second exam. For
statements of the problems, see the posted copy of the exam.

1. Problem One

To see if W1 and W2 are the same, we apply the row space algorithm to the
given spanning sets to find the ”canonical” bases. For W1 and W2, respectively,
this yields

(
1 2 1
−1 1 1

)
∼

(
1 2 1
0 3 2

)
, and




1 2 1
2 1 0
0 3 2


 ∼




1 2 1
0 3 2
0 0 0


 .

Thus, we see that W1 = span{(1 2 1
)t

,
(
0 3 2

)t} = W2, hence the two spaces
are the same.

For the second part, recall that we can find a basis consisting of a subset of a
given spanning set by applying the column space algorithm. The relevant matrix
of columns (and its row echelon form) is




1 2 0
2 1 3
1 0 2


 ∼




1 2 0
0 −3 3
0 0 0


 .

Since the first and second columns are the ones with pivots, we find that {v1, v2}
is a basis of W2. There are other ways to do this second part, and it means that
any pair of the vectors v1, v2, v3 forms a basis.

2. Problem Two

Suppose that the hyperplanes are given by equations
a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 = c1

b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + b6x6 = c2.

Then the intersection is the same as the solution set to the matrix equation Ax = c
where

A =
(

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

)
, and c =

(
c1

c2

)
.

By the rank-nullity theorem applied to the matrix multiplication mapping TA :
R6 → R2, we see that 6 = dimR6 = rank(A) + nullity(A). But the rank of A is
the number of linearly independent rows of A, and thus can’t be any larger than
2. So we conclude that nullity(A) ≥ 4. Hence, the null space of A is at least
4-dimensional. Finally, we know that the solution set to Ax = c is a translate of
this null space, and hence has the same dimension.
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3. Problem Three

To see that S2(R) is a subspace, we must show that it contains the zero vector
and is closed under linear combinations. First, the zero vector in M2(R) is the

matrix
(

0 0
0 0

)
. This is certainly symmetric, and hence an element of S2(R). Now

let A and B be a pair of symmetric matrices, and a, b a pair of real numbers. We
must show that aA+ bB is symmetric. One can do this directly by computing with
a pair of generic 2× 2-matrices, or note that (A + B)t = At + Bt so that

(aA + bB)t = aAt + bBt = aA + bB.

Thus, aA + bB is symmetric.
Now we show that T is a linear transformation. We work with the linear combi-

nation above and compute:

T (aA + bB) =
1
2

(
(aA + bB) + (aA + bB)t

)
=

1
2
(aA + bB + aAt + bBt)

=
a

2
(A + At) +

b

2
(B + Bt) = aT (A) + bT (B)

Thus, T is a linear transformation.

The kernel of T is the set of matrices A such that 0 = T (A) =
1
2
(A + At). That

is, the matrices which have At = −A. These are the skew-symmetric matrices.

The subspace of these is spanned by the single matrix
(

0 −1
1 0

)
. So we see that

nullity(T ) = 1. (I’ve shortened this by omitting the computation that this is a
basis, but it is pretty straightforward.)

The image of T is the entire set S2(R) of symmetric matrices. To see this, realize

that if A is a symmetric matrix, then T (A) =
1
2
(A+At) =

1
2
(A+A) = A. The set

S2(R) has a basis consisting of the three matrices

(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
.

Hence rank(T ) = 3. (Similar to the above step, it is not hard to check that this set
is a basis.)

This allows us to verify the rank-nullity theorem as follows:

dim(M2(R)) = 4 = 3 + 1 = rank(T ) + nullity(T ).

Note that this problem requires playing with matrices a little bit. In particular,
if you are stuck, you need to be able to see that

(
a b
c d

)t

=
(

a c
b d

)
.
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4. Problem Four

Let v, w be two vectors in V and let a, b be a pair of scalars. To show that S ◦T
is a linear transformation, we compute that

(S ◦ T )(av + bw) = S(T (av + bw)) = S(aT (v) + bT (w))

= aS(T (v)) + bS(T (w)) = a(S ◦ T )(v) + b(S ◦ T )(w).

So (S ◦ T ) is a linear transformation.
As for the nullity part of the problem: It is not always true that nullity(S ◦T ) =

nullity(S) + nullity(T ). For an example, consider the matrices

A =




1 0 0
0 1 0
0 0 0


 , and B =




0 0 0
0 1 0
0 0 0


 .

We let S = TB : R3 → R3 and T = TA : R3 → R3. Then nullity(S) = 1 and
nullity(T ) = 2, but nullity(S ◦ T ) = 2 6= 1 + 2, since S ◦ T is left multiplication by

BA =




0 0 0
0 1 0
0 0 0


 = B.


