
HOMEWORK ASSIGNMENT # 3 SOLUTIONS

MATH 251, FALL 2006, WILLIAMS COLLEGE

Abstract. These are the instructor’s solutions.

1. Problem One: On injections

Let f : A → B and g : B → C be functions.

(1) Prove that if f and g are injective, then g ◦ f is injective.
(2) Suppose that g◦f is injective. Is it necessarily true that f is in-

jective? Or that g is injective? Give a proof or counterexample
to back up your answers.

1.1. Solution:

(1) Let x and y be elements of A such that g ◦ f(x) = g ◦ f(y) ∈ C.
Since g is injective, f(x) and f(y) must be the same element
of B. But then since f is injective, x and y must be the same
element of A. Hence g ◦ f is injective.

(2) If g ◦f is injective, then f must be injective, but g need not be.
To see that g is not necessarily injective, consider the following
example. Let f : [0, 1] → [−1, 1] be f(x) = x2, and g : [−1, 1] →
[0, 1] be g(x) = |x|.

To prove that f must be injective, we work the contrapositive
route. Suppose that f is not injective. Then there exist points
x, y such that f(x) = f(y) but x 6= y. Then we see that g ◦
f(x) = g(f(x)) = g(f(y)) = g ◦ f(y), too. Thus g ◦ f is not
injective.

2. Problem Two: On surjections

Let f : A → B and g : B → C be functions.

(1) Prove that if f and g are surjective, then g ◦ f is surjective.
(2) Suppose that g ◦ f is surjective. Is it necessarily true that f is

surjective? Or that g is surjective? Give a proof or counterex-
ample to back up your answers.
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2.1. Solution:

(1) Let x be an element of C. We must produce an element a of A
such that g ◦ f(a) = c.

Since g is surjective, there exists a point b ∈ B such that
g(b) = c. Since f is surjective, there exists a point a ∈ A such
that f(a) = b.

But now g ◦ f(a) = g(f(a)) = g(b) = c. So we are done.
(2) If g ◦ f is surjective, then so must be g, but not f . To see that

f need not be surjective, consider the example of

f : [0, 1] → [0, 1], g : [0, 1] → [0, 1]

defined by f(x) = x/2 and

g(x) =

{
2x, 0 ≤ x ≤ 1/2,
1, 1/2 < x ≤ 1.

We now prove that g must be surjective (by the contra-
positive). Suppose that g is not surjective. Then there is a
point c ∈ C such that g(B) does not contain c. But then
(g◦f)(A) ⊆ g(B) does not contain c, and g◦f is not surjective.

3. Problem Three: On functions and set operations

Suppose that f : X → Y is a function and that A and B are subsets
of X. Prove the following.

(1) f(A ∪B) = f(A) ∪ f(B),
(2) f(A ∩B) ⊆ f(A) ∩ f(B),
(3) if f is an injection, then f(A ∩B) = f(A) ∩ f(B).

3.1. Solution:

(1) Recall that f(A) = {x = f(y) | y ∈ A}. So we see that

f(A ∪B) = {x = f(y) | y ∈ A ∪B}

and

f(A) ∪ f(B) = {x = f(y) | y ∈ A} ∪ {x = f(y) | y ∈ B}
= {x = f(y) | y ∈ A or y ∈ B}.

These are now clearly equal.
(2) y ∈ f(A) means that there exists x ∈ A such that f(x) = y.

So, y ∈ f(A ∩ B) means that there is a point x ∈ A ∩ B such
that f(x) = y. Since x ∈ A, we see that y ∈ f(A) and since
x ∈ B we see that y ∈ f(B). So we have proved the statement.
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(3) Now take a point y ∈ f(A) ∪ f(B). y ∈ f(A) means that
there is a point x1 ∈ A with f(x1) = y. Similarly, there is a
point x2 ∈ B such that f(x2) = y. Since f is injective, we
know that x1 = x2, and the point lies in both A and B. Thus,
y ∈ f(A ∩B).

4. Problem Four: On algebraic numbers

A real number α is called algebraic when it is the root of some poly-
nomial with integral coefficients. What is the cardinality of the set of
algebraic integers? (Back up your answer with a proof.) A number
which is not algebraic is called transcendental. What is the cardinality
of the set of transcendental numbers?

This is not part of the assignment. How many transcendental num-
bers do you know? My guess is that you know two right off the top
of your head. (let them come to you...) Try looking for some others.
(Ask around, look into the literature, etc.) Think about this in the
context of the answers to this problem for some perspective on your
experiences with real numbers. I’ll give a small prize to any student
who finds a transcendental number I haven’t heard about, yet.

4.1. Solution: The set of all algebraic numbers is countably infinite.
It is infinite because it contains all integers. To see that it is countable,
we argue as follows: The set of polynomials with integral coefficients is
countable, since it may be identified with a subset of the set of functions
from Z to Z. Each polynomial has finitely many roots. Thus, the set of
algebraic integers is a countable union of finite (hence countable) sets,
and, therefore, countable.

Since the real numbers can be partitioned into the algebraic numbers
and the transcendental numbers, the algebraic numbers being count-
able and the real numbers being uncountable by Cantor’s theorem, we
deduce that the set of transcendental numbers is uncountable.

My guess is that you are familiar with e and π which are known to
be transcendental. (These are theorems of Hermite (1873) and Linde-
mann (1882), respectively.) So is ln(2) (a theorem of Gelfond-Schneider
covers this, but I suspect this example was known before). The first
one was found by Liouville in 1844, but it is long to describe. Maybe
you know some more?

5. Problem Five: On Brevity

Prove that there are real numbers that cannot be defined uniquely
in a finite number of words.
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5.1. Solution: The set of real numbers that can be defined by a finite
set of words is countable. There are uncountably many real numbers.
Therefore, there exist words that cannot be described in finitely many
words.

Notice that the set of algebraic numbers is a subset of the numbers
that can be defined in finitely many words. (example: ”let α be the
smallest positive root of the polynomial...”) But some transcendental
numbers can also be described in finitely many words, like π, which
is the ratio of the circumference to the diameter of a circle. So, these
numbers are admittedly hard to think about, but in some sense, most
real numbers are this bad.


