
HOMEWORK ASSIGNMENT 4

MATH 251, WILLIAMS COLLEGE, FALL 2006

Abstract. These are the instructor’s solutions.

1. A theorem on sets

Prove that for any sets A,B1, . . . , Bn,

(1) A ∩

(
n⋃

i=1

Bi

)
=

n⋃
i=1

(A ∩Bi).

1.1. Solution. We proceed by induction on the number n of sets labeled Bi.
Case One: (n = 1) In this case, there is nothing to show, as the two sides of (1)
are clearly the same.
Case Two: (n = 2) This case is just one of DeMorgan’s laws, which we discussed
earlier. We must show that

A ∩ (B1 ∪B2) = (A ∩B1) ∪ (A ∩B2).

A point a lies in the left-hand set when a ∈ A and also a ∈ B1 or a ∈ B2. Thus,
there are two cases. Either a ∈ A and a ∈ B1 or a ∈ A and a ∈ B2. This is
equivalent to a ∈ (A ∩B1) ∪ (A ∩B2). So case two is proved.
Inductive step: Suppose that (1) holds for n = k sets. We are to show that it also
holds for n = k +1 sets. Using first case two and then the inductive hypothesis, we
see that the left hand side of (1) is equal to

A ∩

(
k+1⋃
i=1

Bi

)
= A ∩

(
(

k⋃
i=1

Bi) ∪Bk+1

)

= A ∩

(
k⋃

i=1

Bi

)
∪ (A ∩Bk+1)

=
k⋃

i=1

(A ∩Bi) ∪ (A ∩Bk+1)

=
k+1⋃
i=1

(A ∩Bi)

So, by the principle of induction, we are done.
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2. A geometric theorem

Prove that for every integer n ≥ 2 the number of lines obtained by joining n

distinct points in the plane, no three of which are collinear, is
1
2
n(n− 1).

2.1. solution. We proceed by induction.
base case: (n = 1) In this case, there is only one point, so there are no lines to
draw. The equality is then certainly true.
Inductive step: Suppose that for any configuration of k points, no three of which are
collinear, the number of lines that can be drawn joining them is equal to k(k−1)/2.

We are to show that for any configuration of k + 1 points, no three of which are
collinear, the number of lines that can be drawn joining them is (k + 1)k/2.

Suppose we have such a configuration of points p1, . . . , pk+1. Then the configu-
ration p1, . . . , pk satisfies the inductive hypothesis. Therefore, the number of lines
that can be drawn joining all of those points is k(k − 1)/2. To this, we must add
all of the lines which join the remaining point pk+1 to the others. There are ex-
actly k of these, since k cannot lie on any of the previous lines. Hence, there are
k(k − 1)/2 + k = (k + 1)k/2 lines.

So by the principle of mathematical induction, we are done.

3. A new form of induction

Use either form of induction to prove that the following form of induction is also
valid:

Suppose that P (n) is a statement about the natural number n such
that
(1) P (1) is true,
(2) for any k ≥ 1, P (k) true implies P (2k) is also true, and
(3) for any k ≥ 2, P (k) true implies that P (k − 1) is also true.

Then P (n) is true for all n.

3.1. Solution. We suppose that the statements itemized above are true, and that
the principle of weak induction is true. We use weak induction to prove the state-
ment “P (m) is true for all natural numbers m ≥ 1.”
Base Case: m = 1. This is true by the first of the three itemized statements.
Inductive step. Suppose that P (k) is known to be true. We are to show that
P (k + 1) is also known to be true.

We examine some cases: First, note that if k = 1, then 2k = 2 = k + 1, so
P (k + 1) is true by the second itemized statement.

Next, suppose that k > 1. Then by the second itemized statement, P (2k) is also
true. We now use the third itemized statement 2k − k − 1 = k − 1 times to show
that P (2k − 1), P (2k − 2), . . . , P (2k − (k − 1)) = P (k + 1) are all true. This last
one is the one we need to complete the inductive step.

So, by the principle of mathematical induction, P (m) is true for all m ≥ 1.
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4. The arithmetic-geometric mean inequality

Use the last problem to prove the arithmetic-geometric mean inequality : For any
n ≥ 1 and any n nonnegative real numbers a1, . . . , an, we have that

(2)
a1 + · · ·+ an

n
≥ n
√

a1a2 . . . an .

4.1. Solution. We use the form of induction from the last problem.
Base case: (n = 1). If there is only one number, a1, then both sides of equation
(2) are equal to a1.

Base case: (n = 2). Suppose that a1, a2 are nonnegative real numbers. Then we
see that

0 ≤ (
√

a1 +
√

a2 )2 = a1 + a2 + 2
√

a1a2 .

With a small bit of rearrangement, we deduce that
a1 + a2

2
≥ √

a1a2 . Thus, case
2 is true.

First inductive step: Suppose that equation (2) holds for any collection of n = k
nonnegative real numbers. We are to show that it holds for any collection of n = 2k
nonnegative real numbers.

Let a1, a2, . . . , a2k be such a collection. Then, we see that by the inductive
hypothesis and the case n = 2 that

a1 + . . . + a2k

2k
=

1
2

(
a1 + . . . + ak

k
+

ak+1 + . . . + a2k

k

)
≥ 1

2
( k
√

a1a2 · · · ak + k
√

a1a2 · · · ak )

≥
√

k
√

a1a2 · · · ak
k
√

ak+1ak+2 · · · a2k

= 2k
√

a1a2 · · · a2k

Therefore, equation (2) holds for n = 2k also.

second inductive step: Now we assume that equation (2) holds for n = k and we
must show that it also holds for n = k−1. Let a1, . . . , ak−1 be a collection of nonneg-

ative real numbers. We consider the nonnegative real number b =
a1 + · · ·+ ak−1

k − 1
.

Using the inductive hypothesis, we reason that

b =
a1 + · · ·+ ak−1

k − 1
=

k

k − 1
(a1 + · · ·+ ak−1)

k

=
a1 + · · ·+ ak−1 + b

k
≥ k
√

a1a2 · · · b .

We take the kth power of this equation to see that bk ≥ a1a2 · · · b, so that
bk−1 ≥ a1a2 · · · ak−1. Taking the (k − 1)st root, we obtain the required inequality:

a1 + · · ·+ ak−1

k − 1
= b ≥ k−1

√
a1a2 · · · ak−1 .

So, by problem 3, the statement is true for all n.


