HOMEWORK ASSIGNMENT 4

MATH 251, WILLIAMS COLLEGE, FALL 2006

Abstract. This assignment has 4 problems on 1 pages.

1. A THEOREM ON SETS

Prove that for any sets A, B_{1}, \ldots, B_{n},

$$
A \cap\left(\bigcup_{i=1}^{n} B_{i}\right)=\bigcup_{i=1}^{n}\left(A \cap B_{i}\right)
$$

2. A GEOMETRIC THEOREM

Prove that for every integer $n \geq 2$ the number of lines obtained by joining n distinct points in the plane, no three of which are collinear, is $\frac{1}{2} n(n-1)$.

3. A NEW FORM OF INDUCTION

Use either form of induction to prove that the following form of induction is also valid:

Suppose that $P(n)$ is a statement about the natural number n such that
(1) $P(1)$ is true,
(2) for any $k \geq 1, P(k)$ true implies $P(2 k)$ is also true, and
(3) for any $k \geq 2, P(k)$ true implies that $P(k-1)$ is also true.
Then $P(n)$ is true for all n.

4. The arithmetic-GEOMETRIC MEAN INEQUALITY

Use the last problem to prove the arithmetic-geometric mean inequality: For any $n \geq 1$ and any n nonnegative real numbers a_{1}, \ldots, a_{n}, we have that

$$
\frac{a_{1}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \ldots a_{n}} .
$$

