MATH 251 HOMEWORK 6

FALL 2006, WILLIAMS COLLEGE

Abstract

This assignment has 9 problems on 2 pages. It is due on Thursday, November 9 in class.

1. Collections

Find the number of r-collections that can be formed using the elements of the set $X=\{A, B, C, D, E, F, G\}$ if

- $r=4$ and the elements are distinct,
- $r=4$,
- $r=9$.

2. Equations, part one

Find the number of distinct solutions in nonnegative integers of the equation $a+b+c+d+e=24$.

3. Don't multiply

Find the number of terms in the multinomial expansion of $(a+b+c+$ $d+e)^{24}$.

4. An Identity

Establish the following identity:

$$
C(n, n)+C(n+1, n)+C(n+2, n)+\cdots+C(n+r, n)=C(n+r+1, n+1)
$$

5. An allocation problem

Find the number of ways of allocating r identical objects to n distinct locations such that the location i gets at least p_{i} objects, where $i=1,2, \ldots, n$.

6. EQUATIONS, PART TWO

Find the number of solutions in nonnegative integers of the strict inequality $a+b+c+d+e<11$.

7. Equations, part three

Find the number of solutions in integers of the linear equation $p+q+r=$ 25 where p is at least 2 and at most $4, q$ is at least 3 and at most 6 , and r is at least 4 and at most 8 .

8. The first year student mixer

Prove that in any group of 10 people either there is a subgroup of 3 strangers or a subgroup of 4 people known to one another.

9. Permutations again

Find the number of permutations of the digits $1,2, \ldots, 9$ such that

- The blocks 12, 34 and 567 do not appear,
- The blocks 12,23 and 415 do not appear.

