Math 101, Fall 2005, Exam 1 Answers

Problem 1. Part (a): $f^{\prime}(x)=\left(10 x^{9}+9 x^{8}+8 x^{7}+7 x^{6}+6 x^{5}\right) \cdot \tan (3 x)+$ $3 \sec ^{2}(3 x)\left(x^{10}+x^{9}+x^{8}+x^{7}+x^{6}\right)$.
Part (b): $g^{\prime}(x)=\frac{x-2 x \ln x}{x^{4}}$.
Part (c): $\frac{d y}{d x}=(2 x \ln x+x) x^{x^{2}}$.
Problem 2. Part (a): $\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x^{2}}=1$. (hint: use the basic trig limit) Part (b): $\lim _{x \rightarrow 0} \frac{t^{2}-4}{t-2}=4$. (hint: factor the numerator)

Problem 3. The proper graph looks like the following:

Problem 4. One computes the derivative, and evaluates this and the original function to get the necessary information to write down...

$$
y-1=\frac{2+e}{2}(x-1) .
$$

Problem 5. The derivative of f at $x=a$ is the following limit

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h},
$$

provided it exists.
To find the derivative of $f(x)=1 / x$, we simply compute the limit as follows.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=\frac{-1}{x^{2}}
\end{aligned}
$$

Problem 6. One must maximize the function $A(x)=\sin (x)$, we check the endpoints of 0 and π along with the critical point $\pi / 2$. The maximum area occurs when the rectangle is $\pi / 2$ by $2 / \pi$.
Problem 7. We check that the function is a polynomial, hence continuous, and that $f(-1)<0$ and $f(0)>0$. So the intermediate value theorem says that there is some point between -1 and 0 where f takes the value 0 .

