Math 102: First Exam

February 24, 2004, 8 am-9:10 am
Read the directions to each problem carefully. Show all of your work. This exam has 6 questions. Write your answers in your blue book.

Problem 1: (10 points each) Find the family of antiderivatives for each of the following functions.
(a) $f(x)=\frac{1}{x \ln (x)}$,
(b) $g(x)=x e^{-x}$,
(c) $j(x)=\tan ^{3}(x) \sec ^{3}(x)$.

Problem 2: (10 points each) Evaluate the following definite integrals.
(a) $\int_{1}^{2} \frac{x d x}{\sqrt{6 x-x^{2}}}$,
(b) $\int_{1}^{3} \frac{2 \cos ^{2} \theta d \theta}{1+\cos (2 \theta)}$,
(c) $\int_{-2}^{-1} \frac{3 x+6}{x^{3}+2 x^{2}+x} d x$.

Problem 3: (10 points) Explain how the rule for integration by parts can be found from the product rule and the Fundamental Theorem of Calculus.

Problem 4: (6 points each) Do the sequences below converge or diverge? If they converge, find the limit.
(a) The sequence $\left\{a_{n}\right\}_{1}^{\infty}$ where $a_{n}=\frac{7 n^{2}-3}{14 n^{2}+2 n+1}$.
(b) The sequence $\left\{b_{n}\right\}_{1}^{\infty}$ where $b_{n}=2 \sin \left(\frac{\pi n}{2}\right) \cdot \cos \left(\frac{\pi n}{2}\right)$.

Problem 5: (6 points each) Do the series below converge or diverge? If they converge, find the value of the sum.
(a) $\sum_{n=1}^{\infty} \frac{2 n}{\sqrt{9 n^{2}+1}}$,
(b) $\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{e}{3}\right)^{n}$.

Problem 6: (6 points) Show how an improper integral helps to see that $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges. Draw the correct picture and explain.

Bonus Problem: (5 points) Consider the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ where a_{n} is the nth digit in the decimal expansion for π. For example, since $\pi \approx 3.14159 \ldots$, we know that $a_{1}=1, a_{2}=4, a_{3}=1, a_{4}=5$, etc. Does this sequence converge? If so, what is the limit?

