Math 211: First Exam

Spring 2005
This exam has a time limit of one hour and thirty minutes.
Read the directions to each problem carefully.
Show your work.
Problem 1: This question has five parts, each worth 3 points. No partial credit.
A: What is the order of the equation $y^{\prime} \cdot y^{\prime \prime}=\cos \left(y^{\prime \prime \prime}\right)$?
B: Which of the following differential equations is linear?
(i) $\cos (x) y^{\prime}+\sin (x) y-\tan (x)=0$, or (ii) $6+x y^{2}+x^{2}+y^{\prime}=0$.

C: Which of the following equations is autonomous?

$$
\text { (i) } \quad \frac{d y}{d x}=\frac{\cos (y)}{y^{2}+x^{2}}, \quad \text { or (ii) } \quad \frac{d y}{d t}=6 y^{2}-\ln (\cos (y)) \text {. }
$$

D: Is the function $y=x \ln (x)-x+10$ a solution to the equation $e^{y^{\prime}}=x^{2}$?
E: Write an example of a differential equation which is not in normal form.
Problem 2: (15 points) Find a general solution to $y^{\prime}+\frac{2}{x} y=8 x$ by the method of variation of parameters.

Problem 3: (15 points) Use an integrating factor to solve the initial value problem $y^{\prime}=6 y-e^{x}, y(0)=0$. What is the interval of existence of this particular solution?

Problem 4: This problem concerns the equation $y^{2} / x+(2 y \ln (x)+1) \cdot \frac{d y}{d x}=0$.
A: (5 points) Rewrite this equation in differential form, and show that this is an exact equation.

B: (10 points) Find an implicit expression for the general solution to this differential equation.

Problem 5: David runs a lemonade stand. Every day he must spend all of his money on supplies. Fortunately, every day he takes in revenue equal to 2 dollars less than the square of the cash he had on hand before buying supplies.

A: (8 points) Write a differential equation which models the amount of money $M(t)$ dollars that David has t days into the enterprize.

B: (8 points) Use qualitative analysis to draw a phase line for this equation. Is the whole thing worth it if David started with 3 dollars?

Problem 6: This problem concerns the equation

$$
x^{\prime}=f(x, t)=t \cdot x^{2 / 3}
$$

A: (8 points) Are there any initial conditions which can not be satisfied by any solution to the equation? Either give an example or say how you know no such example exists.

B: (8 points) Are there any initial conditions which are satisfied by more than one solution? Either give an example or say how you know no such example exists.

Problem 7: (8 points) Match the direction fields on this page and the next with the corresponding equation.

Equation One: $y^{\prime}=y^{2}-y-6$
Equation Two: $y^{\prime}=(y+t)^{2}$
Equation Three: $y^{\prime}=\sin (2 \pi y) \cdot \sin (2 \pi t)$

Direction Field B

Direction Field C

