Math 211: First Exam Solutions

Problem 1:

A: Third Order.
B: (i) $\quad \cos (x) y^{\prime}+\sin (x) y-\tan (x)=0$ is linear.
C: (ii) $\frac{d y}{d t}=6 y^{2}-\ln (\cos (y))$ is autonomous.
D: $y=x \ln (x)-x+10$ is not a solution to the equation $e^{y^{\prime}}=x^{2}$.
\mathbf{E} : Lots of answers work here. One really simple example is $y^{\prime}+y=0$.
Problem 2: The associated homogeneous equation is $y^{\prime}+\frac{2}{x} y=0$. This is separable, and can be rearranged to read $\frac{d y}{y}=-\frac{2 d x}{x}$. This has solution $y=C x^{-2}$. We vary the parameter C and look for a solution to the original equation of the form $y=v(x) / x^{2}$, where $v(x)$ is a function to be determined. Substituting yields the equation for v :

$$
\left(\frac{v^{\prime}}{x^{2}}+\frac{-2 v}{x^{3}}\right)+\frac{2 v}{x^{3}}=8 x .
$$

Equivalently, we get another separable equation $v^{\prime}=8 x^{3}$. This has solution $v(x)=$ $2 x^{4}+C$. Putting all of this together, we get that our general solution is $y(x)=$ $2 x^{2}+C / x^{2}$.

Problem 3: First we rearrange the equation to read $y^{\prime}-6 y=-e^{x}$. Our integrating factor will be a function u which satisfies $u^{\prime} / u=-6$. Thus, we take $u(x)=e^{-6 x}$. Using this, we have

$$
\left(e^{-6 x} y\right)^{\prime}=e^{-6 x} y^{\prime}-6 e^{-6 x} y=e^{-6 x}\left(y^{\prime}-6 y\right)=e^{-6 x} \cdot\left(-e^{x}\right)=-e^{-5 x} .
$$

We integrate this to find that $e^{-6 x} y=e^{-5 x} / 5+C$, which means $y(x)=e^{x} / 5+C e^{6 x}$. To match the initial condition, we need $C=-1 / 5$. So our particular solution is

$$
y(x)=\left(e^{x}-e^{6 x}\right) / 5
$$

The interval of existence of this solution is the whole line $(-\infty, \infty)$.

Problem 4:

A: In differential form, the equation is $\left(y^{2} / x\right) d x+(2 y \ln (x)+1) d y=0$. That is, $P d x+Q d y=0$ for $P=y^{2} / x$ and $Q=2 y \ln (x)+1$. We then check that $\frac{\partial P}{\partial y}=2 y / x$ and $\frac{\partial Q}{\partial x}=2 y / x$. Since these are equal, the form is exact.

B: To solve the equation, we first integrate P with respect to x.

$$
F(x, y)=\int P d x=\int y^{2} / x d x=y^{2} \ln |x|+g(y)
$$

To find the function $g(y)$, we differentiate the result above with respect to y

$$
2 y \ln (x)+1=Q=\frac{\partial F}{\partial y}=2 y \ln |x|+g^{\prime}(y) .
$$

This means that $g^{\prime}(y)=1$. So we take $g(y)=y$, and our solutions should be defined implicitly by the level sets

$$
F(x, y)=y^{2} \ln |x|+y=C .
$$

Where C is an arbitrary constant.

Problem 5:

A: The proper differential equation is $M^{\prime}(t)=-M+3 M-2=2(M-1)$.
B: The equilibrium points are solutions to $M-1=0$. That is $M=1$. It is not hard to see that this is an unstable point. I'll omit the actual picture of the phase line.

If David starts with three dollars, then his cash on hand M will continue to grow as time increases because he is above the unstable equilibrium. It is worth the effort.

Problem 6:

A: The function $f(x, t)=t x^{2 / 3}$ is continuous in the whole $t x$-plane. So by the Existence theorem, there is some solution for every possible initial condition.
B: The function f has $\partial f / \partial x=\frac{2 t}{3 x^{1 / 3}}$. This is not continuous along the line $x=0$, but is continuous everywhere else. So by the Uniqueness theorem, the only problem spots must occur along the line $x=0$. It is then easy to check that $x(t)=0$ is a solution to the equation. Of course, the equation is separable, so it is not hard to see that a general solution is $x(t)=\left(\frac{t^{2}}{6}+C\right)^{3}$. By picking $C=0$, we get two solutions to the equation which satisfy the initial condition $x(0)=0$. They are $x(t)=0$ and $x(t)=\frac{t^{6}}{216}$. Of course, there are other choices for this last part.

Problem 7: In this problem, we match as follows: equation one corresponds to direction field A, equation two corresponds to direction field C, and equation three corresponds to direction field B .

