
Homework #10 Solutions

1. Exercises from the Text

1.1. Section 9.5.

Problem 3. We are to use the definition to compute the exponential
of the matrix

A =




1 −1 0
1 −1 0
0 0 0


 .

We need to know some of the powers of A, so we compute them. The
square of this matrix is A2 = 0, all of the powers above this vanish,
too. This means that

eA = I + A + 0 =




2 −1 0
1 0 0
0 0 0


 .

Problem 9. Consider the matrices A =

(
0 −2
0 0

)
and B =

(
0 0
2 0

)
.

(a): We see that AB =

(−4 0
0 0

)
but BA =

(
0 0
0 −4

)
.

(b): Note that A + B =

(
0 −2
2 0

)
= 2

(
0 −1
1 0

)
. So that

eA+B = e
2·


0 −1
1 0




To evaluate this last exponential, we note that
(

0 −1
1 0

)2

=

(−1 0
0 −1

)
,

(
0 −1
1 0

)3

=

(
0 1
−1 0

)
,

(
0 −1
1 0

)4

=

(
0 −1
1 0

)
.

Hence, if t = 2,

eA+B =e
t·


0 −1
1 0




=I + t

(
0 −1
1 0

)
+

t2

2!

(
0 −1
1 0

)2

+
t3

3!

(
0 −1
1 0

)3

+
t4

4!

(
0 −1
1 0

)4

+ . . .

=

(
1− t2

2!
+ t4

4!
− . . . t− t3

3!
+ . . .

−(t− t3

3!
+ . . . ) 1− t2

2!
+ t4

4!
− . . .

)

=

(
cos t − sin t
sin t cos t

)
=

(
cos 2 − sin 2
sin 2 cos 2

)

1
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(c): Since both A2 = 0, B2 = 0, it is clear that eA =

(
1 −2
0 1

)

and eB =

(
1 0
2 1

)
, so that

eA · eB =

(−3 −2
2 −3

)
.

This teaches us that the usual rule for exponentials need not
apply if the matrices don’t commute.

Problem 17. We are given that the matrix

A =



−1 0 0
−1 1 −1
−2 4 −3




has only one eigenvalue λ. We are to find the smallest integer k such
that (A− λI)k = 0 and compute eA.

The characteristic polynomial of A is pA(t) = (−1− t)((1− t)(−3−
t) + 4) = −(1 + t)(t2 + 2t + 1) = −(t + 1)3, thus the eigenvalue of A is
λ = −1. We then compute that

A + I =




0 0 0
−1 2 −1
−2 4 −2


 , and (A + I)2 = 0.

Now by Proposition 5.19, we see that

etA = e−t(I + t(A + I)) =




e−t 0 0
−te−t e−t(1 + 2t) −te−t

−2te−t 4te−t e−t(1− 2t)




Problem 25. In this problem, we are to consider the matrix

A =



−2 1 −1
1 −3 0
3 −5 0


 .

• To find the eigenvalues, we compute the characteristic polyno-
mial. It is pA(t) = −1(−5−3(−3− t))−0+(−t)((−2− t)(−3−
t)−1) = −(t3+5t2+8t+4). Let’s forget the negative sign, which
won’t change the roots. Note that t = −1 is a root (by inspec-
tion). So we divide by t+1 to get pA(t) = (t+1)(t2 +4t+4) =
(t + 1)(t + 2)2. Thus our eigenvalues are λ1 = −1, λ2 = −2.
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• The algebraic multiplicity of λ1 = −1 is one, so the geometric
multiplicity must also by one. We find that a corresponding

eigenvector is v1 =
(
2 1 −1

)T
.

• The algebraic multiplicity of λ2 = −2 is two, but it has only

one corresponding eigenvector (up to scaling), v2 =
(
1 1 1

)T
.

The nullspace of (A+2I)2 has dimension two, and we only need
to pick one generalized eigenvector to span this space. The

vector v3 =
(
1 0 −1

)T
.

• To see that the three vectors we have chosen are linearly inde-
pendent, we compute that det(v1,v2,v3) = 1 6= 0.

• We get a fundamental set of solutions to y′ = Ay as

x1(t) = e−tv1, x2(t) = e−2tv2, x3(t) = e−2t (v3 + t(A + 2I)v3) .

We should be a bit more precise about this last one, it is

x3(t) = e−2t








1
0
1


 + t ·




1
1
1






 .

Problem 38. We are to find a fundamental set of solutions to the
equation

x′ =




5 −1 0 2
0 3 0 4
1 1 −1 −3
0 −1 0 7


x.

Call the matrix in question A. We can compute the characteristic
polynomial by expanding A−tI along the third column. We get pA(t) =
(t + 1)(t− 5)3. Thus the eigenvalues of A are λ1 = −1 and λ2 = 5. It
is pretty clear that an eigenvector for A corresponding to λ1 = −1 is

v1 =
(
0 0 1 0

)T
. We then compute that

A− 5I =




0 −1 0 2
0 −2 0 4
1 1 −6 −3
0 −1 0 2




has nullspace of dimension two. But

(A− 5I)2 =




0 0 0 0
0 0 0 0
−6 −6 −36 18
0 0 0 0
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has nullspace of dimension three. It is spanned by the three vectors

v2 =
(
3 0 0 1

)T
, v3 =

(
1 −1 0 0

)T
, v4 =

(
6 0 1 0

)T
.

We then can compute the other fundamental solutions as

x2 = etAv2 = e5t(v2 + t(A− 5I)v2)

= e5t
(
3 + 2t 4t 0 1 + 2t

)T

x3 = etAv3 = e5t(v3 + t(A− 5I)v3)

= e5t
(
1 + t −1 + 2t 0 t

)T

x4 = etAv4 = e5t(v4 + t(A− 5I)v4)

= e5t
(
6 0 1 0

)T

1.2. Section 9.6. My solutions are going to get more terse. . .

Problem 6. The matrix has eigenvalues λ1 = − 1
10

and λ2 = −1
20

with

eigenvectors v1 =
(
0 1

)T
and v2 =

(
1 1

)T
, respectively. Since both

eigenvalues are real and negative, the origin is an asymptotically stable
equilibrium point. In fact, it is a stable node. I used pplane to draw
a phase portrait.

x ’ = A x + B y
y ’ = C x + D y

B = 0
D = − .1

A = − .2
C = − .1
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Problem 10. The eigenvalues of this matrix are 3,−1,−2. Since one
of these is positive, the origin is an unstable equilibrium point. I used
odesolve to plot three ”random” initial conditions. (Actually, they
are just in ”general position”. Humans can’t do ”random” choices.)
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You can see that for each of these solution curves the z coordinate ex-
plodes.

Problem 18. This matrix has eigenvalues of 1, 2, 3. The correspond-

ing eigenvectors are v1 =
(
1 0 0

)T
, v2 =

(
0 0 1

)T
, and v3 =(

1 −1. 0
)T

, respectively. The picture I got is below. This looks like
a three dimensional version of a nodal source. To get a good feel for
this, you should rotate it around and zoom in.
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1.3. Section 9.7.

Problem 9. It is not difficult to check that these are both solutions,
and that at t = 0 their Wronskian is equal to 1.

Problem 31. This equation has eigenvalues ±i. Both are of algebraic
multiplicity two, but geometric multiplicity one. After much work with
matrices and (generalized) eigenvectors, we see that the general solu-
tion to this equation is

x(t) = C1 cos(t) + C2 sin(t) + C3t cos(t) + C4t sin(t).

(Remember, the solution is basically in the first coordinate of the cor-
responding solution to the vector equation).

Problem 36. This has characteristic equation t2 + 4t + 4 = 0 and
thus only one eigenvalue λ = −2 of algebraic multiplicity two. The
geometric multiplicity is one. We find fundamental set of solutions to
the corresponding matrix equation to be

x(t) = e−2t

(−1
2

)
, and x2(t) = e−2t

(
1 + 2t
−4t

)
.

Thus our general solution is

y(t) = C1e
−2t + C2te

−2t.

Checking the initial conditions, we see we must take C1 = 2 and C2 = 3,
so that y(t) = 2e−2t + 3te−2t.

1.4. Section 9.8.

Problem 4. We are to solve the inhomogeneous equation y′(t) =
Ay(t) + f , where

A =

(−3 10
−3 8

)
, and f =

(
e−t

e2t

)
.

Following the procedure for such equations, we first solve the associated
homogeneous problem. A system of fundamental solutions to y′ = Ay
is

x1(t) =

(
2e2t

e2t

)
, and x2(t) =

(
5e3t

3e3t

)
.

Thus we can form a fundamental matrix

Y (t) =

(
2e2t 5e3t

e2t 3e3t

)
,
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and thus find a particular solution to our problem.

xp(t) = Y (t) ·
∫

Y (t)−1f(t) dt

= Y (t) ·
∫ (

3e−2t −5e−2t

−e−3t 2e−3t

) (
e−t

e2t

)
dt

= Y (t) ·
∫ (

3e−3t − 5
−e−4t + 2e−t

)
dt

=

(
2e2t 5e3t

e2t 3e3t

)( −3e−3t − 5t
−1

4
e−4t + 2e−t

)

= −e2t

4

(
3e−3t + 40t + 40
e−3t + 20t + 24

)

The general solution to the inhomogeneous problem is now

y(t) = xp(t) + C1x1(t) + C2x2(t).

Problem 7. This is a lot like the last problem. The eigenvalues are
2, 1, 0. We get corresponding exponential solutions to the associated
homogeneous equations as

x1(t) = e2t




1
0
1


 , x2(t) = et




0
3
1


 , x3(t) =



−1
2
0


 .

So, we can find all the necessary parts to make a particular solution to
the inhomogeneous equation as follows.

Y (t) = [x1(t), x2(t), x3(t)], Y (t)−1f =




0
0

sin(t)


 ,

∫
Y (t)−1f dt =




0
0

cos(t)




Hence a particular solution is

xp(t) = Y (t)

∫
Y (t)−1f(t) dt =




cos(t)
−2 cos(t)

0


 .

The general solution is the sum xp + C1x1 + C2x2 + C3x3.

Problem 17. Given A =

(
5 3
−6 −4

)
and y0 =

(
1
1

)
, we are to com-

pute etA and the solution to y′ = Ay, y(0) = y0.
The eigenvalues of A are −1, 2. From these we build exponential solu-
tions

x1(t) =

(
e−t

−2e−t

)
and x2(t) =

(
e2t

e2t

)
.
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This allows us to make a fundamental matrix Y (t) and compute that

etA = Y (t) · Y (0)−1 =




e−t + 2e2t

3

−e−t + e2t

3−2e−t + 2e2t

3

2e−t + e2t

3


 .

Also, we see that the solution to the initial value problem is

y(t) = etAy0 =

(
e2t

e2t

)
.

Problem 18. This problem is just like the last one. We get that

etA =

(−e−t + 2e−4t −e−t + e−4t

2e−t − 2e−4t 2e−t − 2e−4t

)
,

and

y(t) = etAy0 =

(−e−t + 2e−4t

2e−t − 2e−4t

)
.

2. Exercises from the Manual

2.1. Chapter 8.

Problem 1. The output of this problem is three pictures, which I’ll
include below.
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Solutions to y’=−2*y+2*cos(t).*sin(2*t)
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Solutions to y’=−2*y+2*cos(t).*sin(2*t)
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Solutions to y’=−2*y+2*cos(t).*sin(2*t)

Problem 2. When entering the suggested commands, Matlab will
return the following data.

>> [t,y]=ode45(@steady,0:.25:3,1);

>> [t,y]

ans =

0 1.0000

0.2500 0.7089

0.5000 0.6797

0.7500 0.7103

1.0000 0.6723
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1.2500 0.5354

1.5000 0.3544

1.7500 0.2221

2.0000 0.2086

2.2500 0.3159

2.5000 0.4736

2.7500 0.5743

3.0000 0.5317

Problem 3. Again, the output is a picture. The fun part is that the
pictures are drawn in real time as the computations are done. The
picture is below.
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problem 3 output
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Problem 4. To see the interesting phenomenon, we need an interval
for t which is at least as big as [0, 3]. To see the steady oscillations, we
need as much as [0, 10]. The pictures are below.
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Problem 4: Solutions to y’+4y=2cos(t)+sin(4t)
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Problem 4: Solutions to y’+4y=2cos(t)+sin(4t)
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Problem 14. My output is a pair of graphs. The first is for 0 ≤ t ≤ 3.
The second is for 0 ≤ t ≤ 4 to show the sudden exponential growth.
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Problem 14: Solution to y*y’’−(y’)2−y2=0, y(0)=1,y’(0)=−1
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Problem 14: Solution to y*y’’−(y’)2−y2=0, y(0)=1,y’(0)=−1
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Problem 18. Again, our output is a lot of pictures, which I include
below. I didn’t plot the animated ones, because the final versions aren’t
any different from the 3d plots.
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Problem 18: Beats
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