
HOMEWORK # 2: MATH 211, SPRING 2005

TJ HITCHMAN

Note: This is the last solution set where I will describe the MATLAB I used to
make my pictures.

1. Exercises from the text

1.1. Chapter 2.1. Problem 6. We are to show that y(t) = 4/(1 + Ce−4t) is a
general solution to the equation y′ = y(4 − y), then sketch the particular solutions
with C = 1, 2, 3, 4, 5 on a computer.

To check that the given expression is a general solution, we compute both sides of
the differential equation with it.

y′(t) =
−4 · −4Ce−4t

(1 + Ce−4t)2
=

16Ce−4t

(1 + Ce−4t)2

and

y(t)(4− y(t)) =
4

(1 + Ce−4t)

(
4− 4

(1 + Ce−4t)

)
=

16Ce−4t

(1 + Ce−4t)2
.

Since these agree, the given expression is a general solution to the given equation.
We plot the particular solutions indicated with a MATLAB M-file.

textch2_1prob6.m

t=linspace(-2.5,2.5,1000);

Y=[];

for C=1:5

Y=[Y; 4./(1+C*exp(-4*t))];

end

plot(t,Y)

axis([-2.5,2.5,-0.5,4.5])

grid on

legend(’C=1’,’C=2’,’C=3’,’C=4’,’C=5’,2)

xlabel(’t’)

ylabel(’y’)

title(’Solutions to y’’=y(4-y)’)

shg

The output graph is the following.
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Problem 7. Note that for exercise 6, y = 0 is a solution because then y′(t) = 0 and
y(t)(4 − y(t)) = 0. However, no value of C in the general solution can produce this
particular solution because the fraction in question can never be zero–its numerator
has no roots.
Problem 8. This problem has three parts.

a: Use implicit differentiation to show t2 + y2 = C2 defines solutions to the
differential equation t + yy′ = 0.

If we differentiate the given expression implicity, we obtain 2t + 2y · y′ = 0.
Upon dividing by 2, we get the result.

b: Solve t2 + y2 = C2 for y to provide explicit solutions. Show that these
functions are also solutions to the differential equation in (a).

The algebraic manipulation yeilds y(t) = ±√C2 − t2 . Note that this is a
pair of solutions for each value of C. We differentiate these to find y′(t) =

∓ t√
C2 − t2

. This allows us to check the differential equation as follows:

t + y(t)y′(t) = t +
(
±
√

C2 − t2
)
·
(
∓ t√

C2 − t2

)
= t− t = 0.

c: Discuss the interval of existence for each of the solutions in part (b).
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Fix a value of C, and consider the solutions y(t) = ±√C2 − t2 . This
function is only well-defined for those t which satisfy C2− t2 ≥ 0. This means
that we must restrict at least to the interval −C ≤ t ≤ C. However, we
also require that our solution is continuously differentiable. So we exclude
the endpoints, too. Thus, the interval of existence for these two solutions is
(−C, C).

1.2. Chapter 2.2. Problem 10. We are to find a general solution to the equation
xy′ − y = 2x2y.

To do so by separation of variables, we must first rearrange the equation to read
y′

y
=

2x2 + 1

x
. Then we may integrate with respect to x to find

ln |y(x)| =
∫

y′(x)

y(x)
dx =

∫
2x2 + 1

x
dx

=

∫ (
2x +

1

x

)
dx = x2 + ln |x|+ C.

So ln |y(x)| = x2 + ln |x|+ C is our implicit solution. We exponentiate both sides to
find

|y(x)| = C|x|ex2

.

Whatever sign ambiguities come from having the absolute value bars can be absorbed
into the constant in this case, so we obtain the following explicit general solution:
y(x) = Cxex2

.
Problem 16. We are to find the exact solution to the initial value problem y′ =
ex+y, y(0) = 0 and give the interval of existence.

We separate the variables as follows: e−yy′ = ex, then integrate both sides to get

−e−y − (−1) =

∫ y

0

e−u du =

∫ x

0

ew dw = ex − 1.

We rearrange to obtain the explicit solution y(x) = − ln(2− ex). (This one I had to
double-check to believe. It just felt funny.) In order for the equation to make sense,
we need to restrict to those x for which 2 − ex ≥ 0. That is, we must restrict to
(−∞, ln 2]. Just as before, we need to also assure that our function is continuously
differentiable, so we remove the endpoint. The interval of existence is (−∞, ln 2).

1.3. Chapter 2.3. Problem 12. We are given that a 0.2 kg mass is released from
rest at 50 m, and that it falls against an air resistance of R(v) = −0.1v, where v is
the velocity. What is the velocity upon impact with the ground?

There are two ways to go about this problem. The straightforward way is to write
an initial value problem for the velocity and solve it. Then, integrate with respect to
time, t, to find the position. We then solve for the time it takes the mass to hit the
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ground (numerically, the equation is nasty), and then evaluate the velocity at this
time to get an answer.

The clever way is as follows. The velocity is v = dx/dt. By the chain rule, the
acceleration is

dv

dt
=

dv

dx

dx

dt
=

dv

dx
· v.

We reinterpret this as saying that as a function of x, we can write

dx =
v dv

dv/dt
.

What we shall do is integrate both sides. The left hand side will give us the total
change in position, -50 meters, and the right hand side we need to figure out.

This feels a bit slippery at first, but it is ok. It really depends upon being able to
write the quantity dv/dt as a function of v. But this is exactly what our equation of
motion will tell us.

Using Newton’s laws, we see that the motion of the mass is described by the initial
value problem

2

10

dv

dt
= − 2

10
g − 1

10
v, v(0) = 0.

where g = 9.8m/s2 is the gravitational acceleration constant near the earth. Working
with the manipulation above, we find that

−50 =

∫ 0

50

dx =

∫ vf

v=0

v dv

dv/dt
=

∫ vf

v=0

v dv

−g − v/2
,

where vf is the final (impact) velocity that we seek. I’ll clean up the negative signs
and do some algebra

50 =

∫ vf

0

2v

2g + v
dv = 2

∫ vf

0

2g + v − 2g

2g + v
dv,

equivalently,

25 =

∫ vf

0

(
1− 2g

2g + v

)
dv = vf − 2g ln |2g + vf | − (0− 2g ln |2g + 0|) .

Cleaning up a bit, we get the following implicit equation for the impact velocity

25 = vf − 2g ln |2g + vf |+ 2g ln |2g|.
This is the kind of equation that needs to be solved numerically. We do so with the
MATLAB command

v=solve(’25=v - 2*9.8*log(abs(2*9.8+v)) +2*9.8*log(abs(2*9.8))’)

to find vf = −17.3401 m/s2. Note that MATLAB returns three answers and we need
to pick the correct one.
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1.4. Chapter 2.4. Problem 4. We are asked to find the general solution to the
equation y′ + 2ty = 5t.

We proceed by finding an integrating factor. We are looking for a function u(x)

which satisfies u′/u = 2t. Thus u = et2 will do. Thus, we find that

et2y(t) =

∫
(et2y)′ dt =

∫
et2 (y′ + 2ty) dt =

∫
5t2et2dt =

5

2
et2 + C.

This leads to the general solution of y(t) = 5
2

+ Ce−t2 .
Problem 13. This problem has two parts.

a: Use the technique of integrating factors to find the general solution to the
equation y′ + y cos(x) = cos(x).
We must find a function u(x) such that u′/u = cos(x). Integrating, u(x) =
esin(x) will do. Then we find that

esin(x)y =

∫
(esin(x)y)′ dx =

∫
esin(x) (y′ + cos(x)y) dx

=

∫
esin(x) cos(x) dx = esin(x) + C.

Thus our general solution is y(x) = 1 + Ce− sin(x).
b: Use separation of variables to solve the same equation. Discuss any discrep-

ancies between the two results.
We separate variables to find y′/(1− y) = cos(x). Integrating this, we obtain
− ln |1 − y| = sin(x) + C. This is an implicit equation for the solution. At
first blush, this seems different, but upon rearranging things, (and folding any
ambiguity of sign into the arbitrary constant) we get the same result as in (a),

y(x) = 1 + Ce− sin(x).

2. Exercises from the Manual

2.1. Chapter 2. Problem 2. We are to solve y′ = t(y + 1) with y(0) = 1 over the
interval [0, 2], and use ezplot to make a plot of the solution.

First, we solve the equation using separation of variables.

dy

dt
= t(y + 1)

leads to ∫
dy

y + 1
=

∫
t dt.

Actually, to stick with the initial conditions, we use this version
∫ y

1

du

u + 1
=

∫ t

0

dw.
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Performing the integration, we get

ln |y + 1| − ln |2| = t− 0 = t.

This is an implicit equation for our solution. Rearranging things, we find y = 2et− 1
(we choose the positive possibility to match our initial condition). Then we graph
this with the ezplot command. My MATLAB command line was:

ezplot(’2*exp(x)-1’,[0,2,0.5,14.5]); xlabel(’t’); title(’Solution

to y’’=t(y+1), y(0)=1’)

(You need to play a bit to find the right interval for y.) This produced the following
picture.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10

12

14

t

y

Solution to y’=t(y+1), y(0)=1

Problem 8. We are to solve (1 + 3y2)y′ = cos(t), y(0) = 1 and use the implicit
version of ezplot to graph the solution. This equation already has its variables
separated, so we integrate

∫ y

1

(1 + 3u2) du =

∫ t

0

cos(w) dw.

This yields

y + y3 − 2 = sin(t).

As we are stuck with this implicit equation, we plot it as follows in MATLAB:
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ezplot(’y+y^3-sin(x)-2’,[-2*pi,2*pi,0.5,1.5]);xlabel(’t’);

title(’Solution to (1+3y^2)y’’=cos(t), y(0)=1’)

We get the following.
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Solution to (1+3y2)y’=cos(t), y(0)=1

Problem 21. We are to solve the initial value problem y′ = y sin(t), y(0) = 1 and
write a script M-file to plot the solution over the interval [−2π, 2π]. For the solution,
we separate variables and integrate:

∫ y

1

du

u
=

∫ t

0

sin(w) dw

to get
ln |y| = − cos(t) + 1.

Note that we are interested in a problem which has positive values of y at the initial
condition, so we can solve for the explicit expression

y = e1−cos(t).

I wrote an M-file titled manualch2prob21.m with the following contents.

t=linspace(-2*pi,2*pi,1000);

y=exp(1-cos(t));

plot(t,y)

axis([-2*pi,2*pi,0,10])
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xlabel(’t’)

ylabel(’y’)

title(’Solution to y’’=ysin(t), y(0)=1’)

shg

Running it produced the following picture,
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Solution to y’=ysin(t), y(0)=1

2.2. Chapter 3. Problem 6. We are to plot solution curves to the equation x′ =
1− t2 + sin(tx) with initial values x = −3,−2,−1, 0, 1, 2, 3 at t = 0. This equation is
not very easy to solve, so we just use dfield to plot these. A reasonable window to
show the ”important features” of the graphs is ≤ t ≤, ≤ x ≤. My picture is below.
(Soon, I’ll figure out how to just print the picture, and not all the extraneous stuff.)
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