
HOMEWORK # 4 SOLUTIONS

TJ HITCHMAN

1. Exercises from the text

1.1. Chapter 2.7.

Problem 2 This equation is in normal form and the right hand side has a continuous
partial derivative with respect to y as long as we avoid points where y ≤ 0. Since
our initial condition y(4) = 0 is at the boundary of the good and bad regions, the
theorem does not apply.

Problem 4 This equation is also in normal form. The right hand side has continu-
ous partial derivative with respect to ω at all points (s, ω). Thus, we have a unique
solution to any initial value problem here, including the given one.

Problem 7 This problem concerns the differential equation ty′ − y = t2 cos(t), and
the initial value problem obtained by also requiring y(0) = −3.

• First we find the general solution and graph several members of the family on
a direction field. The equation is linear, so we may use either of the methods
we learned earlier this term. I’ll use variation of parameters (just to keep
sharp). The associated homogeneous equation is ty′ − y = 0. As expected,
this is separable and we rearrange it to read y′/y = 1/t. We integrate to find
ln |y(t)| = ln |t|+ C and then exponentiate to get y(t) = Ct. Notice that any
potential ambiguities of sign have disappeared into the constant.

Following the variation of parameters scheme, we look for a solution of the
type y(t) = v(t) · t. If such a function satisfies the differential equation, we
deduce

t(v(t) + v′(t) · t)− v(t) · t = t2 cos(t).

We clean this up a bit to read v′(t)t2 = t2 cos(t). If this is going to happen,
we must have v′(t) = cos(t) and hence v(t) = sin(t) + C.

Putting this all together, we get a general solution of

y(t) = t sin(t) + Ct.
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I have graphed several of these below.
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Some solutions to ty’−y=t2 cos(t)

• There is no solution which satisfies the initial condition because if t = 0 then
y(t) = t(sin(t) + C) = 0, too. This doesn’t contradict the existence theorem
because our equation was not in normal form! If we rearrange the equation to
normal form we get y′ = y/t + t cos(t), which is not continuous at any point
with t-coordinate equal to 0. Hence, the theorem does not apply.

Problem 9 Consider the initial value problem y′ = 3y2/3, y(0) = 0. We are given
the functions y1(t) = t3 and y2(t) = 0. It is easy to see that y2 is a solution to the
initial value problem, because in this case, everything in sight is always zero. It is a
simple check to see that y1 is also a solution. This does not contradict the unique-
ness theorem, because the partial derivative of the right hand side of our equation
with respect to y is 2y−1/3. As this function is not continuous at the point (0, 0, the
theorem does not apply.
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For the next two exercises, there are two parts. First, we are to use a numerical solver
to sketch the solution to the initial value problem, discuss difficulties the solver may
have and estimate from the sketch what the interval of existence for the solution is.
Second, we are to solve the equation by hand and find the actual interval of existence
for comparison.
Problem 12 The initial value problem is y′ = t−2

y+1
, y(−1) = 1. We use dfield to

sketch the solution, and we get the following picture.
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y ’ = (t − 2)/(y + 1)

From the picture, it appears that the interval of existence for the solution is
(−∞,−0.235). (I zoomed a bit.)

To solve the equation by hand, notice that it is separable. It can be rearranged to
read

(y + 1)y′ = t− 2

Now we integrate to find the implicit solution. (Use the definite integral to save
work.)

y2

2
+ y =

t2

2
− 2t− 1.

To get an explicit solution, multiply through by 2 and then add 1 to each side to
obtain

(y + 1)2 = y2 + 2y + 1 = t2 − 4t− 1,
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and hence our explicit solution is

y(t) = −1 +
√

t2 − 4t− 1 .

By checking when the term inside the square root is positive, we can see that the
interval of existence is really (−∞, 2 − √

5 ). This compares well with our answer
above, since 2−√5 ≈ −0.2361.

Problem 13 The initial value problem is y′ = 1
(t−1)(y+1)

, y(0) = 1. We use dfield

to sketch the solution, and we get the following picture.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

t

y

y ’ = 1/((y + 1) (t − 1))

From the picture, it appears that the interval of existence for the solution is
(−∞, 0.86). (Again, I zoomed in.)

To solve the equation by hand, notice that it is separable. It can be rearranged to
read

(y + 1)y′ =
1

t− 1

Now we integrate and rearrange to find the implicit solution.

y2

2
+ y − 3

2
= ln |t− 1|.
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This requires the same type of trick as above to rearrange. We get an explicit solution
of

y(t) = −1 +
√

4 + 2 ln |t− 1| .

For this expression to make sense, we need to avoid t = 1 and we need the expression
inside the square root to be positive. This works out to give the restriction that
t < 1− e−2. Hence, the interval of existence is really (−∞, 1− e−2). This compares
well with our answer above, because 1− e−2 ≈ 0.8647.

1.2. Chapter 2.8. For all of the exercises in this section, we are try some target
practice with the dfield program. Our initial condition always happens at t0 = 0,
and we try to hit the specified point (3, 0).

Problem 1 The equation is x′ = x− t. I’ll include a picture of my trials below.
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Eventually, I found that the starting position needed was x = .8000. The good
curve is in red. I wrote all of those zeros because I’m fairly sure they are there. That
is, I think they are significant digits.
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Problem 5 The equation is x′ = x2 − t. I’ll include a picture of my trials below.
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Eventually, I found that the starting position needed was about x = 0.72775. The
good curve is in red.
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Problem 9 The equation is x′ = x sin(x)+ t. I’ll include a picture of my trials below.
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x ’ = x sin(x) + t

Eventually, I found that the starting position needed was about x = −3.231725. The
good curve is in red.
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2. Exercises from the manual

2.1. Chapter 4.

Problem 10 First we solve the initial value problem y′−y/t = −t sin(t), y(π) = −π
by hand. This is a linear equation, I solved it with the integrating factor u = 1/t:

(
1

t
y)′ =

1

t
y′ − 1

t2
y =

1

t
(y′ − y/t) =

1

t
(−t sin(t)) = − sin(t).

So we integrate to get y/t = cos(t) + C, or, equivalently, y(t) = t cos(t) + Ct. To get
the initial value correct, we must choose C = 0, so our solution is y(t) = t cos(t).

As for the MATLAB portion of the problem, the function m-file I wrote was:

function y = prob10(x)

% This is a MATLAB file for a function required in a

% homework problem. See manual ch4, prob 10

y = x.*cos(x);

To get the minimum and where it occurs, you use the command fminbnd as follows.
[t,y]= fminbnd(@prob10,0,2*pi). This returns t =3.4256, y= -3.2884. The
first output is the minima value and the second is the minimum value. We include
our pretty picture below.
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This function takes its minimum 
value −3.2884 at the point 3.4256 
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Problem 14 This problem is exactly like the last one, except we are given the initial
value problem y′ = y cos(t), y(0) = 1. This equation is separable, so we may solve
it easily. The general solution is y(t) = Cesin(t). To match the initial condition, we
must take C = 1, hence our solution is y(t) = esin(t).

Again, we pass to the MATLAB portion of the problem. I wrote the function m-file
below:

function y=prob14(x)

% This is a MATLAB file for a function required in a

% homework problem. See manual ch4, prob 14

y=exp(sin(x));

We can then graph the function and use fminbnd just as above. The minima is at
t = 4.7124 and the minimum value is y = 0.3679. Our pretty picture is included
below.
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The mimimum for this function 
occurs at t=4.7124. At this point, 
the function takes the minimum
value of y=0.3679. 
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Problem 20 For this problem we are to write some MATLAB code which allows us
to easily graph a family of functions for several different values of the parameter. I
wrote the following function m-file:

function y=prob20(x,C)

% This function implements a family of functions

% with parameter C which is required for prob 20

% in ch4 of the manual.

y=C*t.*exp(-t.^2);

And then I wrote a script m-file (which called the previous function) to make the
graphs. This file was:

t=linspace(-2,2,500);

y=[];

for C=-3:3

y=[y; prob20(t,C)];

end

plot(t,y)

xlabel(’t’)

ylabel(’y’)

title(’Some curves from the family y=Cte^{-t^2}’)

axis([-2,2,0,2])

legend(’C=-3’,’C=-2’,’C=-1’,’C=0’,’C=1’,’C=2’,’C=3’)

shg
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The resulting picture looks like this.
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3. The Extra Exercise

Problem This exercise has three parts related to the initial value problem
y′ = y2, y(0) = 1.

(1) Solve by hand. This equation is separable, so we need only rearrange y′
y2 = 1

and integrate to get

− 1

y(t)
−

(
−1

1

)
=

∫ t

0

y′(t)
y(t)2

dt =

∫ t

0

dt = t.

Or, in an explicit form, y(t) = 1
1−t

. This solution has interval of existence
equal to (−∞, 1).

(2) Use Picard iteration to find approximate solutions. Recall that we begin with
the constant function

y(t) = y0 = 1

and continue by using the rule yn+1(t) = 1 +
∫ t

0
yn(s)2 ds. This involves a fair

amount of algebra, so I used MATLAB to compute symbolically. I’ll attach a
MATLAB diary to the end of the document. It can be difficult to see what is
happening here–we have polynomials, but their coefficients are strange, and
the have relatively high degree very quickly. But notice that after so many
times, we get some thing like y5(t) = 1 + t + t2 + . . . . When we square such
things and integrate, we will get more ones as coefficients! So, I conjecture
that my approximates will eventually look like 1+t+t2+· · ·+tn+strange stuff.
Another look at the weird high order terms can help. Notice that in most of
the fractions, the denominator looks bigger than the numerator. If you use the
sym2poly command in MATLAB to get a clear look at just the coefficients,
you see that in both y5 and y6, most of the coefficients of really high order
are so close to zero that MATLAB can’t tell the difference. And all of the
coefficients are at most 1, with the ones for low order terms being spot on
equal to 1. This also helps back up our conjecture. Of course, to be really
sure, we should probably write a script to compute the first 300 or 400 terms
and look at those.

Anyway, to see that this is going to the right place, we only need to recall
that the power series for 1

1−t
about 0 is

1

1− t
= 1 + t + t2 + t3 + t4 + t5 + . . .

So everything makes sense. Notice that even though our actual solution has
a restricted interval of existence, the approximate solutions given by Picard’s
method don’t show this. They are all defined everywhere (since they are
polynomials).
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(3) To make a picture on a direction field, I use dfield and the cut-and paste
of MATLAB to save work. My picture is below. (It is a bit ugly; I haven’t
mastered the graphing in dfield yet.)
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Finally, here is the MATLAB diary I kept of my work for this problem.

t=sym(’t’); y0=1; y1=1+int(y0^2,t,0,t)

y1 =

1+t

y2=1+int(y1^2,t,0,t)

y2 =

1+1/3*t^3+t^2+t

y3=1+int(y2^2,t,0,t); pretty(y3)

7 6 5 4 3 2

1 + 1/63 t + 1/9 t + 1/3 t + 2/3 t + t + t + t

y4=1+int(y3^2,t,0,t); pretty(y4)

15 14 13 12 11 22 10

1 + 1/59535 t + 1/3969 t + 1/567 t + 1/126 t + 5/189 t + --- t

315

86 9 71 8 29 7 6 13 5 4 3 2

+ --- t + --- t + -- t + 2/3 t + -- t + t + t + t + t

567 252 63 15

y5=1+int(y4^2,t,0,t); pretty(y5)

2 3 43 6 5 4 13 7 1019 14 13141 13 17779 12

1 + t + t + t + -- t + t + t + -- t + ---- t + ----- t + ----- t

45 15 8820 73710 68040

1477 11 27523 10 3497 9 943 8 63283 15

+ ---- t + ----- t + ---- t + ---- t + ------ t

4050 56700 5670 1260 893025

30 29 13 28 27

+ 1/3544416225 t + 1/236294415 t + --------- t + 2/6751269 t

315059220
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26 5309 25 16927 24 2447 23

+ 1/595350 t + --------- t + --------- t + -------- t

675126900 540101520 22504230

557 22 207509 21 16511 20 162179 19

+ ------- t + --------- t + ------- t + -------- t

1666980 225042300 7144200 30541455

2588 18 1080013 17 43363 16 31

+ ------ t + -------- t + ------- t + 1/109876902975 t

229635 48580560 1058400

sym2poly(y4)

ans =

Columns 1 through 7

0.0000 0.0003 0.0018 0.0079 0.0265 0.0698 0.1517

Columns 8 through 14

0.2817 0.4603 0.6667 0.8667 1.0000 1.0000 1.0000

Columns 15 through 16

1.0000 1.0000

sym2poly(y5)

ans =

Columns 1 through 7

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Columns 8 through 14

0.0000 0.0001 0.0003 0.0009 0.0023 0.0053 0.0113

Columns 15 through 21
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0.0222 0.0410 0.0709 0.1155 0.1783 0.2613 0.3647

Columns 22 through 28

0.4854 0.6168 0.7484 0.8667 0.9556 1.0000 1.0000

Columns 29 through 32

1.0000 1.0000 1.0000 1.0000

’And just for good measure’

ans =

And just for good measure

y6=1+int(y5^2,t,0,t); sym2poly(y6)

ans =

Columns 1 through 7

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Columns 8 through 14

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Columns 15 through 21

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Columns 22 through 28

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Columns 29 through 35

0.0001 0.0002 0.0004 0.0007 0.0012 0.0020 0.0034
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Columns 36 through 42

0.0057 0.0090 0.0141 0.0215 0.0319 0.0463 0.0657

Columns 43 through 49

0.0911 0.1235 0.1640 0.2133 0.2718 0.3393 0.4150

Columns 50 through 56

0.4976 0.5846 0.6729 0.7587 0.8375 0.9046 0.9556

Columns 57 through 63

0.9873 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Column 64

1.0000

diary off
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