
HOMEWORK # 9 SOLUTIONS

1. Exercises from the Text Chapter 9

1.1. Section 9.1. I’ll omit the tedious calculations and just post answers here.

Problem 3 The characteristic polynomial is pA(t) = (t+2)(t+5), so the eigenvalues
of A are −2,−5.

Problem 8 The characteristic polynomial is pA(t) = (6−t)(−9−t)+50 = t2+3t−4 =
(t− 1)(t + 4). Thus the eigenvalues of A are λ = 1,−4.

Problem 12 The characteristic polynomial is pA(t) = (t + 1)(t2 − 5t + 20) (expand
along the second row of A − tI to compute the determinant). The first factor gives
an eigenvalue of −1. The second factor has a negative discriminant, and we get a

conjugate pair of complex eigenvalues
5± i

√
55

2
.

Problem 20 We are to solve the system y′ = Ay for A =

(
3 −2
4 −3

)
. The matrix

A has trace T = 0 and determinant D = −1. Thus the characteristic polynomial
of A is pA(t) = t2 − 1. So the eigenvalues of A are ±1. We row reduce A − I to

find that v1 =

(
1
1

)
is an eigenvector corresponding to 1. Similarly, we find that

v2 =

(
1
2

)
is an eigenvector for −1. We have found a pair of distinct eigenvalues and

their corresponding eigenvectors, so we can simply write down a fundamental set of
solutions as follows.

x1(t) = etv1 =

(
et

et

)
,

x2(t) =e−tv2 =

(
e−t

2e−t

)
.
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Problem 22 In this problem we use the matrix A =

(−3 14
0 4

)
. The trace is

T = 1 and the determinant is D = −12, so the characteristic polynomial is pA(t) =
t2− t+12 = (t+3)(t− 4). We get the following eigenvalue/eigenvector pairs: for the

eigenvalue λ1 = −3 the corresponding eigenvector is v1 =

(
1
0

)
, for the eigenvalue

λ2 = 4 the corresponding eigenvector is v2 =

(
14
1

)
. As these are distinct, we are

assured that everything works fine and we can write down a fundamental system of
solutions directly.

x1(t) =e−3tv1 =

(
e−3t

0

)
,

x2(t) = e4tv2 =

(
14e4t

e4t

)
.

1.2. Section 9.2. Again I will omit some of the tedious computations and sketch
out the solutions.

Problem 9 We are to solve the initial value problem y′ = Ay for A =

(−5 1
−2 −2

)
,

y(0) =

(
0
−1

)
. The trace is T = −7 and the determinant is D = 12, so the char-

acteristic polynomial is pA(t) = t27t + 12 = (t + 3)(t + 4). We get the following
eigenvalue/eigenvector pairs: for the eigenvalue λ1 = −3 the corresponding eigen-

vector is v1 =

(
1
−2

)
, for the eigenvalue λ2 = −4 the corresponding eigenvector is

v2 =

(
1
1

)
. As these are distinct, we are assured that everything works fine and we

can write down the general solution directly.

x(t) = C1e
−3tv1 + C2e

−4tv2 = C1

(
e−3t

0

)
+ C2

(
14e4t

e4t

)
=

(
C1e

−3t + 14C2e
−4t

C2e
−4t

)
.

To satisfy our initial condition we must have

C1 + 14C2 = 0, and C2 = −1.

So we can solve for C2 = −1 and C1 = 14. This means that our specific solution is

x(t) =

(
14e−3t − 14e−4t

−e−4t

)
.
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Problem 23 This time we must find a fundamental set of solutions for the system

y′ = Ay where A =

(−4 −8
4 4

)
. This matrix has trace T = 0 and determinant

D = 16, so its characteristic polynomial is pA(t) = t2 +16. This has a pair of complex
conjugate roots λ1,2 = ±4i. We write out the complex solution corresponding to

λ1 = 4i. The corresponding complex eigenvector is v1 =

(−1 + i
1

)
, so our complex

solution is

xC(t) = e4iv1 =

(
e4i(−1 + i)

e4i

)
.

We use Euler’s formula and gather up the real and complex parts to read

xC(t) =

(− cos(4t)− sin(4t)
cos(4t)

)
+ i

(
cos(4t)− sin(4t)

sin(4t)

)
.

We know that our fundamental solutions are just the real and imaginary parts of this
complex solution, so we read off

x1(t) =

(− cos(4t)− sin(4t)
cos(4t)

)

x2(t) =

(
cos(4t)− sin(4t)

sin(4t)

)
.

Problem 38 This time we must find a fundamental set of solutions for the system

y′ = Ay where A =

(−3 1
−1 −1

)
. This matrix has trace T = −4 and determinant

D = 4, so its characteristic polynomial is pA(t) = t2 + 4t + 4 = (t + 2)2). So we get
only one eigenvalue λ = −2. We find that the nullspace of A − (−2)I = A + 2I is

only one-dimensional and is spanned by v1 =

(
1
1

)
. This will give us one solution

very quickly

x1(t) = e−2t

(
1
1

)
=

(
e−2t

e−2t

)
.

We know the other solution is of the form

x2(t) = e−2t (v2 + tv1) ,

where v2 is a vector chosen so that (A + 2I)v2 = v1. If we write v2 =

(
x
y

)
, then we

are looking for a solution to the system

(A + 2I)v2 =

(−1 1
−1 1

)(
x
y

)
=

(
1
1

)
.
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That is, we must pick x, y so that −x + y = 1. We choose x = 0 and y = 1. This
allows us to write out a second solution in the form

x2(t) = e−2t (v2 + tv1) =

(
te−2t

e−2t + te−2t

)

Problem 42 This is the same as the last problem except that we are to use the

matrix A =

(
5 1
−4 1

)
. Here the trace is T = 6 and the determinant is D = 9. Thus

the characteristic polynomial is pA(t) = t2−6t+9 = (t−3)2, and the only eigenvalue
is λ = 3. The corresponding eigenspace is one dimensional and is spanned by the

vector v1 =

(
1
−2

)
. So, as above, we can immediately write down one solution as

x1(t) = e3t

(
1
−2

)
=

(
e3t

−2e3t

)
.

For the other solution, we must find a vector v2 for which (A − 3I)v2 = v1. This

matrix equation is equivalent to the single equation 2x + y = 1, where v2 =

(
x
y

)
.

We pick the solution x = 0, y = 1. Therefore, our second solution is

x2(t) = e3t (v2 + tv1) =

(
te3t

e3t − 2te3t

)
.
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1.3. Section 9.3.

Problem 7 I did all of the computations and plotting in Matlab. My picture looks
like the following.
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The half line in the 
direction of (4,4)T.

The half line in the 
direction of (−2,1)T. 

Problem 17 We are considering the system y′ =
(

0 3
−3 0

)
y. The matrix has trace

T = 0 and determinant D = 9. Thus the characteristic polynomial is p(t) = t2 + 9
which has roots λ = ±3i. The real parts of these are zero, so the equilibrium point

is a center. At the point y =
(
1 0

)T
we get that y′ =

(
0 3
−3 0

)(
1
0

)
=

(−3
0

)
. I

just went ahead and sketched the solution curve through this point with Matlab. I
can’t seem to get the axes to measure up the same. The picture is supposed to be
circular. Also, I double checked this picture against the numerical routines in pplane

and they compared well.
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Problem 23 We are consider the system y′ =

(−3 2
−4 1

)
y. This matrix has trace

T = −2 and determinant D = 5. The characteristic polynomial p(t) = t2 + 2t + 5 =
(t + 1)2 + 4, and hence the eigenvalues of the matrix are λ1,2 = −1± 2i. As the real
parts of these eigenvalues are negative, this equilibrium point is a spiral sink. At the

point y =
(
1 0

)T
, the direction vector is y′ =

(−3 2
−4 1

)(
1
0

)
=

(−3
−4

)
. Again, we

sketch the solution curve through this point using Matlab. Also, I double checked
this picture against the numerical routines in pplane and they compared well.
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1.4. Section 9.4.

Problem 7 We are to solve the following system.

x′ =− 4x− 5y + 4z

y ′ =− y + 4z

z ′ = z.

In matrix form this is

w′ =



−4 −5 4
0 −1 4
0 0 1


w,

where w =
(
x y z

)
. Since the matrix in question is upper triangular, it is not

difficult to read of the eigenvalues and compute the corresponding eigenvectors. We

obtain pairs of λ1 = −4,v1 =
(
1 0 0

)T
, λ2 = 1,v2 =

(−6 10 5
)T

and λ3 =

−1,v3 =
(−5 3 0

)T
. Since we have enough to form a fundamental set of solutions,

we can write down the general solution easily as

x(t) = C1e
−4tv1 + C2e

tv2 + C3e
−tv3 =




C1e
−4t − 6C2e

t − 5C3e
−t

10C2e
t + 3C3e

−t

5C2e
t


 .

Problem 33 We are to consider the system

x′ = x

y ′ = x + y

z ′ =− 10x + 8y + 5z.

The matrix in question is




1 0 0
1 1 0
−10 8 5


. The eigenvalues are 1 and 5. The geometric

and algebraic multiplicity of 5 are both one. For 1, the algebraic multiplicity is two,
but the geometric multiplicity is one, as the nullspace of A − tI is spanned by the

vector v =
(
0 1 2

)T
. Thus there are not enough eigenvectors to write out a general

solution, and the exercise ends.
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Problem 34 This exercise is just like the last one, except that the system in question
is

y′ =




2 0 0
−6 2 3
6 0 −1


 .

The characteristic polynomial of the matrix is p(t) = det(A − tI) = (2 − t)(2 −
t)(−1 − t). So we have a pair of eigenvalues. The eigenvalue −1 has algebraic and
geometric multiplicity one. The corresponding eigenspace is spanned by the vector

v1 =
(
0 1 −1

)T
. The eigenvalue 2 has algebraic multiplicity two. It also has

geometric multiplicity two, as the corresponding eigenspace is spanned by the vectors

v2 =
(
0 1 0

)T
and v2 =

(
1 0 2

)T
. This allows us to write down the general

solution as

x(t) = C1e
−tv1 + C2e

2tv2 + C3e
2tv3 =




C3e
2t

C1e
−t + C2e

2t

−C1e
−t + 2C3e

2t


 .

2. Exercises from the manual chapter 12

Problem 32 Using Matlab’s matrix commands, I found the eigenvalue/eigenvector
pairs as follows:

λ1 = −1,v1 =




0
1
1


 , λ2 = 2,v2 =



−1
1
1


 , λ3 = −3,v3 =




1
0
1


 .

Because we can write 


1
1
1


 = 2v1 − v2 + 0v3,

we know that the answer can be written as

y(t) = 2e−tv1 − e2tv2 =




e2t

2e−t − e2t

2e−t − e2t


 .
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Problem 33 Again, I used Matlab’s eig command to find the eigenvalues and
eigenvectors of the matrix. Some of them are messy, and to get workable numbers
(i.e. integers) I used the poly, and null commands, too. It is especially useful to use
null(·,’r’) command.

I get the following pairs:

λ1 = 4,v1 =




2
1
2


 , λ2 = −3,v2 =




3
2
0


 , λ3 = −3,v3 =




1
0
2


 .

This system is a bit easier to solve because the algebraic multiplicity and the geometric
multiplicity of the eigenvalue −3 match at two. Since




1
2
1


 = 5v1 − 3

2
v2 − 9

2
v3,

we know that the answer can be written as

y(t) = 5e4tv1 + e−3t

(
−3

2
v2 − 9

2
v3

)
=




10e4t − 9e−3t

5e4t − 3e−3t

5e4t − 9e−3t


 .

Problem 34 This exercise is similar to the last two. The eigenvalues are 1 and 2± i.
The eigenspace for 1 is two dimensional and spanned by

v1 =




0
−1
2
0


 and v2 =




2
1
0
4


 .

To deal with the complex eigenvalues, we just proceed as normal (as if complex
numbers didn’t bother us) until the very end. The eigenvectors corresponding to 2+ i
and 2− i are, respectively,

v3 =




2− i
1− 3i

0
5


 and v4 =




2 + i
1 + 3i

0
5


 .

I then used Matlab to find that


3
2
1
1


 =

1

2
v1 +

11

2
v2 +

−21 + 2i

10
v3 +

−21− 2i

10
v4.
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Hence, we can write out our solution as

x(t) =et

(
1

2
v1 +

11

2
v2

)
+ e(2+i)t−21 + 2i

10
v3 + e(2−i)t−21− 2i

10
v4

=et




11
5
1
22


 + e(2+i)t−21 + 2i

10
v3 + e(2−i)t−21− 2i

10
v4

To get somewhere with the last two terms, one can just plod on through, or notice
that the third term is the conjugate of the second. Hence the sum of these is equal
to twice the real part of the second term. This helps us to compute that

x(t) = et




11
5
1
22


 + e2t




−8 cos(t)− 5 sin(t)
−3 cos(t)− 13 sin(t)

0
−21 cos(t)− 2 sin(t)




This was a pretty complicated computation, so I checked it by asking Matlab to do
the following.

syms t real;

A= (type in matrix)

f= (type in the expression above as a vector of functions)

z=diff(f);

w=A*(f);

z-w

This returns a zero column vector, so we are happy.

10


