
MATH 211 LECTURE 13

Matrix algebra, vectors and linear equations

We begin our study of linear algebra with the basics. We shall try to take the
shortest route to the results we need to understand systems of differential equations.

1. Matrices and vectors

Matrices and vectors are just arrays of numbers. They are tailored to help us solve
problems involving linear equations, which we shall see later today. But before they
can become useful, we have to know what they are and how to play with them.

An m × n matrix is an array of numbers which has m rows and n columns. Ab-
stractly, the general m× n matrix can be written like

A =




a11 a12 a13 . . . . . . a1n

a21 a22 a23 . . . . . . a2n

a31 a32 a33 . . . . . . a3n
...

...
...

. . . . . .
...

am1 am2 am3 . . . . . . amn




The first index on the symbol aij tells you that the number lives in the i-th row,
and the second symbol tells you that it lives in the j-th column. This specifies where
in the matrix to put the number. Sometimes we shall denote a matrix by the symbol
A = (aij), where the index i runs from 1 to m and the index j runs from 1 to n.
Examples: give 2 × 3, 3 × 2, 4 × 4, 2 × 4 matrices as examples. just use arbitrary
numbers. Be sure to drop in some irrationals and even transcendentals. What is a
1× 1 matrix?

A row vector is a matrix which is just a single row with many columns. That is, a
row vector is a 1× n matrix like

v =
(
7 5 34 π e2 0

)

A column vector is a matrix which is just a single column with many rows. That
is, a column vector is a n× 1 matrix like

w =




7
5
34
π
e2

0




1



We shall have slightly more use for column vectors than row vectors. It is probably
safe to assume that if I just say vector, I mean a column vector.

A matrix which has size n × n is called a square matrix of size n. The matrix

E =

(
2 1
1 1

)
is square of size 2.

Notice that my matrices have round brackets. This is not for any particular reason
other than that I think they look better this way. Sometimes I will forget and write
them with curly braces or with square brackets.

2. Matrix Algebra

Since matrices are just bundles of numbers, it stands to reason that one can do
some algebraic manipulation with them like numbers. Some care is required to get
all of the definitions correct, and trying to divide can be a disaster until you know
more.

2.1. addition. Given two matrices A and B of the same size we can add rather
easily. Just add component by component.

For example, if

A =

(
0 1
1 0

)
, and B =

(
3 −1
π 7

)
,

then it is easy to compute that

A + B =

(
3 0

1 + π 7

)
.

Warning! If your matrices have different sizes, then matrix addition doesn’t make
any sense. It is ’undefined’.
Examples: Make up some problems on the spot with various numbers for the stu-
dents to try together. Be sure some examples are not square.

2.2. vector addition. You have probably seen some addition of vectors before. It is
worth pointing out that this definition above is the same as the one you know. Often,
we shall use a geometric interpretation of vector addition.—give picture of this.

2.3. scalar multiplication. When considering vectors and matrices, regular num-
bers are often called scalars, just to give them a name to distinguish them from the
other types of objects running around. Any matrix can be multiplied by any scalar.
The idea is to multiply the scalar quantity to all of the entries of the matrix.
Example: Consider the 2× 3 matrix

C =

(
3 0 −5
0 −2 1

)
.
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Then

7 · C =

(
21 0 −35
0 −14 7

)
.

Give students an example or two to work on.

2.4. Matrix subtraction. Note that A − B is just A + (−1) · B. Also, the zero
matrix of size m×n acts just like zero for numbers. It is the matrix O with all entries
equal to zero. Then A + O = A, and A− A = O, etc.

2.5. Matrix Multiplication. This is the most important operation for us as it is the
part most important to our future work with differential equations. We can multiply
a pair of matrices only under constraints on their size. Consider an m × n matrix
A = (aij) and a n × p matrix B = (bjk). We define the matrix product of A and B
to be the m× p matrix

C = A ·B = (cik)

where cik =
∑n

j=1 aijbjk. This looks a bit weird the first time, but it isn’t so bad.
Describe the row times column ”zip” for multiplying matrices. Notice how it re-

quires that ”the sizes match up in the middle”. Do some examples. Matrix multipli-
cation is ’not defined’ for pairs which do not match up in size properly.

Of course, if the matrices are both square of the same size n, then we can take their
product in both orders! That is, we can consider A · B and B · A. The interesting
part is that these two operations need not be the same.

Example Use A =

(
1 1
0 1

)
and B =

(
2 0
0 1

)
to illustrate this.

Two matrices A and B which are square of size n are said to commute if we have
A · B = B · A. The matrices in the last example do not commute, but the matrix A

does commute with C =

(
1 3
0 1

)
. Do this in class.

2.6. The identity matrix. The identity matrix of size n is the matrix

I = In =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . 0 1




which has zeros down the diagonal (i.e those entries aij with i = j.
We say that a square matrix A of size n is invertible if there is another square

matrix B also of size n such that A ·B = In. In this case, we also get that B ·A = In

and A and B commute. If A is invertible, then we denote its inverse by the symbol
A−1.
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Not all matrices are invertible. For example, the matrix

D =

(
1 0
0 0

)

doesn’t have a multiplicative inverse. That is, there is no matrix C such that C ·D = I
Compare the operations we know to those of the set of integers.

2.7. A new operation. Given an m× n matrix

A =




a11 a12 a13 . . . . . . a1n

a21 a22 a23 . . . . . . a2n

a31 a32 a33 . . . . . . a3n
...

...
...

. . . . . .
...

am1 am2 am3 . . . . . . amn




,

we can define the transpose of A to be the n×m matrix

AT =




a11 a21 a31 . . . . . . am1

a12 a22 a32 . . . . . . am2

a13 a23 a33 . . . . . . am3
...

...
...

. . . . . .
...

a1n a2n a3n . . . . . . amn




For example, if A =

(
1 2
0 3

)
, then AT =

(
1 0
2 3

)
. What is the transpose of the

row vector v from above?

3. linear equations

The wonderful part of what we have set up is that now we have a very compact
way of writing systems of linear equations. Discuss how to write an equation in two
or three unknowns as a matrix equation like A · x = b where A is a matrix of the
appropriate size, and x and b are vectors. A solution becomes a vector of the same
size as x.

Do some explicit examples to see how this works.
Example: The system of linear equations in three unknowns x, y, z given by

3x + 2y −z =8

12x + 7y+5z =1

x− y −z =0

can be reinterpreted in matrix notation as


3 2 −1
12 7 5
1 −1 −1


 ·




x
y
z


 =




8
1
0


 .
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Or A · x = b, where

A =




3 2 −1
12 7 5
1 −1 −1




x =




x
y
z




b =




8
1
0




3.1. Matrix Division. We haven’t discussed this yet. Well, we wish we could divide.
It would make our lives easier. Truth be told, it is not possible to ”divide” all of the
time. We really think about division as multiplication by the inverse and then it

seems possible. But there are troubles. For example, the matrix D =

(
1 0
0 0

)
above

doesn’t have a multiplicative inverse.
If we could show that A was invertible, then we could solve the system of equations

by writing x = A−1 ·b. Wouldn’t that be nice? We’ll spend a whole lot of time trying
to work around this problem. That is, when does a square matrix have an inverse?
If it does, how do we find it? If the matrix we get isn’t square, what do we do?
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