
211 LECTURE 16

Subspaces, etc.

Recall our proposition from before spring break that a system of linear equations A ·x = b has a
solution set which can be described in terms of the solutions to the associated homogeneous equation
A · x = 0.

So we take up the study of homogeneous systems with the hope of gaining some insight on the
general problem. (In fact, when we get around to applying this knowledge to differential equations,
this case will be important.)

The nullspace of a matrix A is the solution set to the corresponding homogeneous system of
equations A · x = 0.

Proposition: The nullspace N of an m× n matrix is a vector subspace of Rn. That is, it satisfies
the following properties:

(1) N is not empty. (it contains 0.)
(2) For any two vectors x and y in N , we have x + y is in N .
(3) For any real number c and any x in N , the vector c · x is also in N .

The key point is that the regular operations apply here and the results don’t leave the nullspace.
These properties basically say that N has the same type of structure as the vector space Rn, it is
just smaller. By using the second and third properties, it is easy to see that the following property
also holds.

Proposition: If x1, . . . ,xk are in N and a1, . . . , ak are real numbers, then the vector a1 ·x1 + · · ·+
ak · xk is also in N .

The type of sum in the last proposition is called a linear combination of the vectors x1, . . . ,xk.

Examples: Find the nullspaces of



−1 −2 3
1 2 1
2 4 1


 and




1 1 0 0
−1 1 1 1
1 3 1 1
0 4 2 0




In all of these examples, the nullspace is given by linear combinations of just a few vectors. To
formalize this we use the definition.

Suppose that we are given vectors x1, . . . ,xk. The span of these vectors is the set of all of their
linear combinations. Sometimes this is denoted span(x1, . . . ,xk). It is not difficult to see that the
span of a set of vectors is also a subspace of Rn.

It would be nice to be able to pick a smallest subset of the nullspace which spans it. This will
enable us to avoid repetition.

A set of vectors x1, . . . ,xk is called linearly independent if the only way to make a linear combi-
nation of them which represents the zero matrix is with all coefficients equal to zero. That is, if the
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only solution to the equation
a1 · x1 + · · ·+ ak · xk = 0

is the trivial solution a1 = a2 = · · · = ak = 0. A set which is not linearly independent is called
linearly dependent. Note that a set is linearly dependent exactly when one of the vectors lies in the
span of the others. This means that there is redundancy in describing the span.

Examples The set {v1 = (7, 1, 9)T , v2 = (2,−1, 9)T , v3 = (−3, 2,−16)T } in R3 is linearly depen-
dent because −v1 + 17v2 + 9v3 = 0. The set {w1 = (2, 1, 3)T , w2 = (1,−3, 1)T , w3 = (1, 7, 1)T }
is linearly independent. To see this, note that span(w2, w3) = span((1, 0, 1)T , (0, 1, 0)T ). Hence
span(w1, w2, w3) = span((0, 0, 1)T , (1, 0, 1)T , (0, 1, 0)T ) = span((0, 0, 1)T , (0, 0, 1)T , (0, 1, 0)T ) is all of
R3.

This idea gives us a way to more efficiently describe our nullspaces. Fix some subspace V
in Rn. A set of vectors x1, . . . ,xk in V is a basis of V if it is a linearly independent set and
V = span(a1 · x1 + · · ·+ ak · xk).

Important note: A basis is not unique. There are usually lots and lots of different bases for a
given subspace. This means your answer can look very different, but actually be the same. Think
of a basis as a basic set of allowed directions. Use can use north and east, or northwest and south,
etc. Using a different basis was important in our understanding the second example above.

The dimension of a subspace is defined to be the number of elements in a basis. It is a chore
to prove that this number is the same for all bases. In all cases we care about, this number will
correspond to the ”natural” notion of dimension.

This leaves us with another problem, though. When can we say that a set of vectors is linearly
independent? There is a test.

Proposition: Suppose that x1, . . . ,xk are vectors in Rn. Let X = [x1, . . . ,xk] be the matrix with
columns equal to the xi’s.

(1) If the nullspace N (X) is the trivial subspace {0}, then the vectors are linearly independent.
(2) If the nullspace contains a nontrivial vector, then the set {x1, . . . ,xk} is linearly dependent.

The proof of this is to restate the definitions of dependence and independence along with the defi-
nition of matrix multiplication. Key observation: The vector equation a1 · x1 + · · ·+ ak · xk = 0 is
equivalent to the matrix equation X · (a1, . . . , ak)T = 0.

This changes the problem into one we know how to solve: Use row reduction. But that is not
very satisfying, as row reduction can take a long time. Next time we’ll find a tool for doing this better.

The long and the short of this discussion is the following: These tools help us describe the solution
sets to homogeneous linear systems effectively. As this is part of describing the solution set to an
arbitrary problem, we are happy to have the information.
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