
211 LECTURE 23

The matrix exponential function

In a sense, we start over. Recall that the solution to a linear homogeneous equation
in one variable

x′ = ax, and x(0) = C,

is just x(t) = eatC. I’ve written it backwards from how we usually do, but that’s not
a big deal. So, what we want to say is that the solution to the problem

x′ = Ax, and x(0) = v,

is just x(t) = etAv. But what does it mean to take the exponential of a matrix?
Recall that for a number,

ex = 1 + x +
1

2!
x2 + · · · =

∞∑

k=0

xk

k!
.

So we try the following: Definition: The exponential eA of a matrix A is the matrix

eA = I + A +
1

2!
A2 + · · · =

∞∑

k=0

Ak

k!
.

The tricky part here is to show that this makes any sense. That is, one has to show
that the infinite sum always converges. We’ll take this for granted in our class.
Example It is not difficult to use the definition to show that

if A =




λ1 0 . . .
0 λ2 . . .
0 . . . λn


 , then eA =




eλ1 0 . . .
0 eλ2 . . .
0 . . . eλn


 .

So we readily see that in the 1× 1 case (numbers), we get the old function back.
Example One can use the definition to show that

e


0 −θ
θ 0




=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

But it is much less clear what happens when one tries to compute something like

the exponential of

(
1 x
0 1

)
.

1



Important Properties of the matrix exponential

• e0 = I,
• A · eA = eA · A,
• If A,B commute, that is if AB = BA, then eA+B = eAeB,
• eA is always invertible and (eA)−1 = e−A,
• If λ,v is an eigenvalue, eigenvector pair for A, then etAv = eλtv,

• d

dt
etA = AetA,

• x(t) = etAv is a solution to x′ = Ax,x(0) = v.

Notice that the last few properties tell us that exponentials help us solve differential
equations, and that if we can find eigenvectors, the solutions we get are just like the
ones we found before. This is good news. What we need now is a good method for
computing eA. The full version of this will have to wait a few days, but we can do
something for the unsolved case above. The idea is to use generalized eigenvectors
effectively with the third property above and the definition.

Example Consider the case of A =

(
5 1
0 5

)
. We have seen that v =

(
1 0

)T
is a

generalized eigenvector for A. So we can try to find a solution to our differential
equation x′ = Ax, x(0) = v as follows. Write tA = 5tI + t(A− 5I) and note that 5tI
commutes with t(A− 5I). Thus our solution is is

x(t) = etAv = e5tI+t(A−5I)v

= e5tIet(A−5I)v

= e5t(I + t(A− 5I) + . . . )v

= e5t(v + t(A− 5I)v +
t2

2!
(A− 5I)2v + . . . )

But (A − 5I)2v = 0 because this is the level at which v becomes a generalized
eigenvector! Thus the series vanishes after a finite number of terms and becomes very
computable. If you check, this answer agrees with the one we got before.

This is the sort of thing we can always do. Use generalized eigenvectors and the
series will terminate after a finite number of terms.
Example Try this out on the matrix

B =




1 −1 2 0
0 1 0 0
0 0 1 0
0 −1 2 1


 .

The key is that (B − I)2 is zero.
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General procedure for solving higher dimensional systems

Given an equation x′ = Ax we can solve the system by x(t) = etAv where v is a
”general vector” of constants. In practice, this boils down to the following process
(to be more precise about the solutions).

• Find the eigenvalues λ1, . . . , λn of A.
• For each eigenvalue λi

– Find the algebraic multiplicity d,
– Find the smallest integer k such that the nullspace of (A − λiI)k has

dimension d,
– Find a basis v1, . . . vd of this nullspace.
– For j = 1, . . . d write out the (possibly complex-valued) solution

xj(t) = etAvj = eλit

(
vj + t(A− λiI)vj + . . . +

tk−1

(k − 1)!
(A− λiI)vj

)

– If xj(t) is complex valued, take its real and imaginary parts.
• Collect up all of the various xj’s from the different λi’s. This will give a

fundamental set of solutions.
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