
211 LECTURE 24

Qualitative Properties of Higher dimensional systems

Things are significantly more complicated in higher dimensions. But we can say
the following. Let λ1, . . . , λn be the eigenvalues of A.

• If Re(λi) < 0 for each eigenvalue, then the origin is an asymptotically stable
point (a ”sink”).

• If there is an eigenvalue λj such that Re(λj) > 0, then the origin is an unstable
equilibrium point.

• If all eigenvalues have Re(λj) > 0, then we have a ”source”.
• There are higher dimensional versions of nodes, saddles, etc. They are defined

in the ”obvious ways”.

Another look at higher order equations in one dimension

We have already discussed how to turn such an equation into a higher dimensional
system. Recall that the first coordinate in such a system is where the function itself
is kept, and the other coordinates are for its derivatives. In the case that the equation
is linear like

(1) y(n) + a1(t)y
(n−1) + · · ·+ an(t)y = f(t),

the resulting system will be linear, too. It is not difficult to see that the words ”ho-
mogeneous” and ”constant coefficients” correspond, too. If we simply apply what
we have learned about systems to this case and reinterpret it, we get a lot of con-
sequences which are not immediately clear (and perhaps strange) from the original
point of view.

So, consider the equation 1 together with the initial conditions y(t0) = y0, y
′(t0) =

y1, . . . y
(n−1)(t0) = yn−1. Then we have the following results.

Theorem. Suppose that for all t ∈ (α, β), the functions ai(t) are continous. Then
the problem has a unique solution which is defined for all the whole interval (α, β).
Theorem. If the equation is homogeneous, then the solution set has the form

{c1y1(t) + . . . cnyn(t) | ci ∈ R}

where the collection of yi(t)’s are a functionally independent set of solutions.
Theorem. The solutions yi(t) are functionally independent if and only if their Wron-
skian does not vanish some point. (The Wronskian is either never zero or always zero.)
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Recall that the Wronskian is

W (t) = det




y1(t) . . . yn(t)
y′1(t) . . . y′n(t)
. . . . . . . . .

y
(n−1)
1 . . . y

(n−1)
n


 .

Theorem. If the coefficients are constant ai(t) = ai, then we can compute the
characteristic polynomial of the matrix A corresponding to our problem as follows.

pA(t) = det(A− tI) = tn + a1t
n−1 + · · ·+ an−1t + an.

(Expand along the bottom row.)
We will still need to find a way to deal with inhomogeneous equations. This will

happen next time.
Example: Consider a mass hanging from a spring under the influence of gravity.
The spring has a ”natural length”. We use this to set the origin of a linear coordinate
system which has positive up and negative down. We have a restoring force which by
Hooke’s law is given by −kx, (k > 0), and gravity is given by −mg. Newton’s laws
give us

mx′′ = F = −kx−mg.

This is linear but not homogeneous. We can change that by changing coordinates.
The equilibrium point of this system is when x′ = 0 = x′′, that is at x0 = −mg/k.
We introduce a new coordinate y = x − x0 = x + mg/k. Then y′ = x′, y′′ = x′′ and
our equation looks like

y′′ = (−k/m)y.

So we set out new equations x1 = y, x2 = y′, x =

(
x1

x2

)T

. Then we get the system

x′ =
(

0 1
− k

m
0

)
x.

To ease computation we introduce the number ω0 =
√

k/m called the ”natural
frequency” of our oscillator. Applying our theory of linear systems, we see that the
general solution of the system is

x(t) = C1

(
cos(ω0t)

−ω0 sin(ω0t)

)
+ C2

(
sin(ω0t)

ω0 cos(ω0t)

)
.

Of course, our desired function is the first coordinate of this, so we see that the general
solution of the original equation is

x(t) = C1 cos(ω0t) + C2 sin(ω0t)−mg/k.
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