211 LECTURE 25

Today we study inhomogeneous equations $x^{\prime}=A x+f$. The solution set always has the form $x_{p}+x_{g}$ where x_{p} is a particular solution and x_{g} is the general solution to the associated homogeneous problem.

As usual, this means that the key to the inhomogeneous equation is to start by solving the homogeneous version. Suppose that $y_{1}(t), \ldots y_{n}(t)$ is a fundamental set of solutions for the homogeneous equation $x^{\prime}=A x$. We form the matrix

$$
Y(t)=\left[y_{1}(t), \ldots, y_{n}(t)\right]
$$

called a fundamental matrix for $x^{\prime}=A x$.
Notice that $Y^{\prime}=A Y$. (direct computation). Thus we have.
Theorem. A matrix valued function $Y(t)$ is a fundamental matrix for $x^{\prime}=A x$ if and only if

- $Y^{\prime}=A Y$, and
- $Y\left(t_{0}\right)$ is invertible for some (and hence any) t_{0}.

Fundamental matrices have two applications.
Application One: exponentials of matrices
Theorem. If $Y(t)$ is a fundamental matrix for the system $x^{\prime}=A x$, then the exponential $e^{t A}$ of A can be computed as

$$
e^{t A}=Y(t) \cdot Y(0)^{-1}
$$

The proof: Use the uniqueness theorem. Both $e^{t A}$ and $Y(t) y(0)^{-1}$ are solutions to the (matrix) initial value problem $X^{\prime}(t)=A \cdot X(t), X(0)=I$.
Example $A=\left(\begin{array}{cc}-5 & 1 \\ -2 & -2\end{array}\right) \ldots$
Application Two: Variation of Parameters
The general solution to $x^{\prime}=A x$ is given by $x(t)=e^{t A} v$, where v is a vector of constants. (Note: $Y(t)=e^{t A}$ is a fundamental matrix.) We will vary the constants v, and look for a solution of $x^{\prime}=A x+f$ in the form $x_{p}(t)=Y(t) v(t)$, where $v(t)$ is a vector of functions to be determined.
Since $x_{p}(t)$ is a solution, we see that

$$
\begin{aligned}
A Y(t)+f(t) & =A x_{p}(t)+f \\
& =x_{p}^{\prime}(t) \\
& =Y^{\prime}(t) v(t)+Y(t) v^{\prime}(t) \\
& =A Y(t) v(t)+Y(t) v^{\prime}(t)
\end{aligned}
$$

For this to match, we need to have $Y(t) v^{\prime}(t)=f(t)$. Of course, $Y(t)$ is invertible, so we need $v^{\prime}(t)=Y(t)^{-1} f(t)$. Thus

$$
v(t)=\int Y(t)^{-1} f(t) d t
$$

And therefore our particular solution must be

$$
x_{p}(t)=Y(t) \cdot \int Y(t)^{-1} f(t) d t
$$

And we can then write out our general solution as

$$
x(t)=Y(t) C+Y(t) \cdot \int Y(t)^{-1} f(t) d t
$$

for a vector of constants C, because $Y(t) C$ is the general solution of $x^{\prime}=A x$. Example: We solve

$$
x^{\prime}=\left(\begin{array}{cc}
5 & 6 \\
-2 & -2
\end{array}\right) x+\binom{e^{t}}{e^{t}}
$$

... do the computation... The answer is

$$
y(t)=\binom{2 e^{t}+9 t e^{t}}{e^{t}+6 t e^{t}}+C_{1}\binom{2 e^{2 t}}{e^{2 t}}+C_{2}\binom{3 e^{t}}{2 e^{t}}
$$

