MATH 211 LECTURE 3

TJ HITCHMAN

1. Separable initial value problems

Discuss more efficient use of initial conditions in solution of separable first order equations. Use neglected example from last time: $y^{\prime}=x^{2} y^{2}, y(0)=1 / 2$ with solution $y=\frac{1}{2-x^{3} / 3}$.

2. Models of linear motion

For our first examples of applications, we use basic physics-the kind you've seen. "Motion in one dimension" Easiest to discuss things using Newton's laws: One of the laws of motion $F=m a$ and gravitation $F=G M m / r^{2}$. We make approximations for motion near surface of earth (a commonly observed phenomenon), get influence of gravity is $G M / r^{2}=g=$ const $\approx 9.8 \mathrm{~m} / \mathrm{s}$. Note: instead of second order equation for the position, we get first order equations in the velocity-we can try these!
example toss of an object (say chalk). Get $m \cdot \overline{v^{\prime}=-m} \cdot g, v^{\prime}(0)=20 \mathrm{~m} / \mathrm{s}$. Easy to solve.
example add other forces! most common is air resistance. The two types typical are proportional to velocity and velocity squared: add these equations to the list. $m v^{\prime}=-m g-A v$ and $m v^{\prime}=-m g-A v|v|$. solve these in special cases? Say add linear resistance to my equation above of the form $-.05 v$.

3. Linear equations

An important class of equations that we can solve is the collection of linear equations. These are equations whose normal form looks like

$$
y^{\prime}=f(x) y+g(x) .
$$

It is not uncommon to see these out of normal form in the following manner:

$$
f(x) y^{\prime}+g(x) y=h(x)
$$

In fact, we like the second version better. This general type where h is not identically zero is called an inhomogeneous equation. If $h(x)=0$ identically, then the equation is said to be homogeneous. We can define an associated homogeneous equation by removing the h term.
3.1. integrating factors. This method is based on a way to use the product formula. The idea is to try and use it backwards! We are looking to rewrite the equation so that a product is present! This will simplify our integration problems.

The idea is that basically the equation had a factor common to both sides, and someone cancelled them before giving you the problem. Our goal is to put it back in to fix things.

Start with equation $y^{\prime}+g(x) y=h(x)$. (Notice change in starting form.) We want to realize LHS as the derivative of a product like this:

$$
(f(x) y)^{\prime}=f(x) y^{\prime}+f^{\prime}(x) y=f(x)\left(y^{\prime}+\frac{f^{\prime}(x)}{f(x)} y\right)
$$

This means that to realize our LHS as a product, we need to multiply the equation through by the function f which satisfies $f^{\prime} / f=g$. This function is called an integrating factor. Then we can just integrate up and rearrange. Note that any one integrating factor will do, don't need the general solution.
example $y^{\prime}+6 y=1$. If u is to be an integrating factor, we want

$$
(u y)^{\prime}=u\left(y^{\prime}+\frac{u^{\prime}}{u} y\right)=u\left(y^{\prime}+6 y\right)
$$

Hence, we must solve $u^{\prime} / u=6$. This has a solution of $u=e^{6 x}$. We multiply through by this function to see

$$
e^{6 x} y=\int\left(e^{6 x} y\right)^{\prime}=\int e^{6 x}\left(y^{\prime}+6 y\right)=\int e^{6 x}=\frac{1}{6} e^{6 x}+C
$$

We then rearrange to find $y(x)=\frac{1}{6}+C e^{-6 x}$.
Note that an equation may have more than one integrating factor, but any one will do. Very common to have exponentials in the integrating factor.
example $y^{\prime}-y=\cos (x)$. We want to find a function u so that $(u y)^{\prime}=u y^{\prime}+u^{\prime} y$ is equal to $u\left(y^{\prime}-y\right)$. Setting these equal, we find that u must satisfy $u^{\prime}=-u$. This has solution $u=e^{-x}$. So we find that
$e^{-x} y=\int\left(e^{-x} y\right)^{\prime} d x=\int e^{-x}\left(y^{\prime}-y\right) d x=\int e^{-x} \cos (x) d x=\frac{e^{-x}}{2}(\sin (x)-\cos (x))+C$.
We rearrange to find $y=\frac{\sin (x)-\cos (x)}{2}+C e^{x}$.
example Students try $y+\frac{y}{x}=8 x^{6}$. Answer is $y(x)=x^{7}+\frac{C}{x}$. The integrating factor is x.

