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1. Linear Equations, continued

1.1. Variation of parameters. This is a different way to put the product formula
to use. It is not so different in idea from the last method, but very different in
implementation.

Solve homogeneous equation by separation of variables. y = Ce
∫

g(x)/f(x) dx is the
answer.

Proposition: If yp(t) is a particular solution to the linear first order equation
f(x)y′ + g(x)y = h(x) and yH(x) is a solution to the associated homogeneous equa-
tion f(x)y′+g(x)y = 0, then y = yp +yH is a solution to the inhomogeneous problem.

give simple proof. So problem is now, how do we even find a particular solution to
the inhomogeneous equation? Well, one way to fix the whole thing is with variation
of parameters.

Basic idea is this: our solution to the homogeneous problem is supposed to be
related, so we look for solutions of the form y(t) = v(x)yH(x). That is, we postulate
that a solution looks like this, and we try to figure out what the function v has to be.
This leads to the following setup:

If y = v · yH is a solution, we must have

h(x) = f(x)(v · yH)′ + g(x)(v · yH)

= f(x)(v′ · yH + v · y′H) + g(x)(v · yH)

= v (f(x)y′H + g(x)yH) + f(x)v′ · yH

= 0 + f(x)v′ · yH .

This means that we can find v as a solution to the first order separable equation

v′ =
h(x)

f(x)yH

, which is okay because we already have yH at our disposal.

Note that if you try the method and you don’t get a big cancellation, you have
made a mistake–start over. It is also a good idea to check that your answer takes
the form “particular solution”+”general solution to the homogeneous problem”. i.e.
yp + yH–this should happen, too, but it is not always obvious.

example y′ = y + cos(x). The associated homogeneous equation is y′ = 2y. This
is separable with a particular solution of yH(x) = ex. We then look for a solution
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of the form y(x) = v(x)yH(x). As above, we end up at the equation v′ =
cos(x)

ex
.

We integrate this to find... v(x) = e−x

2
(sin(x)− cos(x)) + C. So the general solution

looks like

y(x) = v(x) · yH(x) =
sin(x)− cos(x)

2
+ Cex

example y + y
x

= 8x6. Answer is y(x) = x7 + C
x

(In this case yH = 1/x.)

example Students try y′ = y + x. Final solution is: y(x) = Cex − x− 1.

2. Mixing Problems

Another application problem set. The mixing problems are a common way to set up
some differential equation problems. Usual deal: assume that whatever is happening
is mixed instantaneously. a bit unphysical, but gives us math we can do now, not
next year.

These are really word problems. Two things worth remembering for setting up the
math part properly:

• dx/dt = Rate IN - Rate OUT.
• Watch your physical units. They often tell you exactly what to do.

We cover examples that are problem 3 and 4 from section 2.5 of the text.
example(Text, ch2.5# 3) The integrating factor required for problem 3 is u = et/20.

The resulting solution is x = 25 − 23e−t/20. Note we don’t actually need to find the
constant to solve this problem. Now use dfield6 to show approximately the same
thing.

example(Text, ch2.5# 4) This leads to a separable homogeneous linear equation.
solve by separating variables to get ln |x(t)| = ln(25)−At/500. We want x(60) ≤ 5 lb.
Hence, 2 ln(5) − 60A/500 ≤ ln(5) is what we need. In the end, this means that we
need A ≥ 25

3
ln 5 ≈ 13.412 gal/min.
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