1. Let $P=(2,3,1), Q=(2,2,2), R=(3,3,-1)$.
(a) Find the equation of the plane through P, Q and R.

Solution: We see that the plane is parallel to the vectors $v=Q-P=(0,-1,1)$ and $w=R-P=(1,0,-2)$ hence the normal direction to the plane is $v \times w=(2,1,1)$. Therefore, we conclude that the plane is the set of points $X=(x, y, z)$ which satisfy

$$
0=(X-P) \cdot(v \times w)=2(x-2)+(y-3)+(z-1)=2 x+y+z-8 .
$$

(b) Let l be the line given by $x=2-t, y=3 t, z=1+2 t$. Find the intersection point of the plane and the line.
Solution: a point of intersection must lie on both the plane and the line, and thus satisfies the equations given and the equation from (a). We substitute to obtain:

$$
0=2(2-t)+3 t+1+2 t-8=3 t-3
$$

Thus we must have $t=1$. This corresponds to the point $(1,3,3)$.
2. Let P be the plane given by the equation $x_{1}-2 x_{2}+3 x_{3}+4=0$ and let Q be the plane given by all points of the form

$$
(2,4,1)+\lambda(3,3,1)+\mu(2,-1,1), \quad \lambda, \mu \in \mathbb{R}
$$

Determine whether P and Q are parallel or not.

Note: Two planes are called parallel if they do not intersect, an equivalent condition is that two planes are parallel if their normal vectors are parallel.
Solution: A vector normal to P can be found by thinking of P as the 0-level set for the function $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-2 x_{2}+3 x_{3}+4$ and taking the gradient at some convenient point. This is $n_{1}=\nabla f=(1,-2,3)$. This is at any point, as the gradient is constant.
The normal vector to Q is $n_{2}=(3,3,1) \times(2,-1,1)=(4,-1,-9)$. It is pretty clear that n_{1} and n_{2} are not parallel (they are not proportional), so neither are P and Q.
3. Consider the two functions $f: \mathbb{R} \rightarrow \mathbb{R}^{3}, f(t)=(\cos (t), \sin (t), t), g: \mathbb{R}^{3} \rightarrow \mathbb{R}, g(x, y, z)=$ $x^{2}+y^{2}+z^{2}$.
(a) Use the chain rule to compute the derivative of $g \circ f$ at the point $t=\pi / 4$.

Solution: We compute that $f(\pi / 4)=(\sqrt{2} / 2, \sqrt{2} / 2, \pi / 4)$, and

$$
D f(\pi / 4)=\left(\begin{array}{c}
-\sqrt{2} / 2 \\
\sqrt{2} / 2 \\
1
\end{array}\right), D g(\sqrt{2} / 2, \sqrt{2} / 2, \pi / 4)=\left(\begin{array}{lll}
\sqrt{2} & \sqrt{2} & \pi / 2
\end{array}\right)
$$

and finally that
$D(g \circ f)(\pi / 4)=D g(\sqrt{2} / 2, \sqrt{2} / 2, \pi / 4) D f(\pi / 4)=\left(\begin{array}{lll}\sqrt{2} & \sqrt{2} & \pi / 2\end{array}\right)\left(\begin{array}{c}-\sqrt{2} / 2 \\ \sqrt{2} / 2 \\ 1\end{array}\right)=\pi / 2$.
Alternate Solution: The chain rule says that

$$
\frac{d(g \circ f)}{d t}=\frac{\partial g}{\partial x} \frac{d x}{d t}+\frac{\partial g}{\partial y} \frac{d y}{d t}+\frac{\partial g}{\partial z} \frac{d z}{d t} .
$$

Then we compute the required partial derivatives and substitute in, recalling that $f(t)=(x(t), y(t), z(t))$.
(b) View the function f as describing a path in 3 -space. Write an equation for the tangent line to this path at the point $(0,1, \pi / 2)$.

Solution: The line is those points described by

$$
(0,1, \pi / 2)+t(-1,0,1), \quad t \in \mathbb{R}
$$

4. An astronaut is floating in the middle of a nebula in outer space. The gas in this nebula is very hot, and she must decrease the temperature she experiences as quickly as possible. In a rectangular coordinate system centered on her, the temperature of the gas (in degrees Centigrade) is described by the equation

$$
T(x, y, z)=-2 x+\sin \left(x^{2}\right) y^{2}+2 z+78 .
$$

(a) Which direction should the astronaut go? (Note that the astronaut is located at $(0,0,0)$).
Solution: the astronaut should go in the direction of greatest decrease of the function, which is the negative of the gradient. So we compute $\nabla T(0,0,0)=(-2,0,2)$ and suggest that the astronaut go in the direction of $-\nabla T(0,0,0)=(2,0,-2)$
(b) Would traveling in the direction of the vector $\mathbf{v}=(-1,-17,1)$ increase or decrease the temperature she experiences?
Solution: We need to compute the directional derivative in the direction specified. It is

$$
\nabla T(0,0,0) \cdot(-1,-17,1) /\|v\|=4 /\|v\|>0 .
$$

As this is positive, the temperature will increase in this direction.
5. Consider the graph of the function

$$
f(x, y)=x^{3}\left(y^{2}-1\right)+(x-y)^{3} .
$$

(a) Find the equation of the tangent plane to the graph at $P=(1,2)$.

Solution: Can do this by just recalling the linear approximation formula. Another way follows. The graph of f is the 0 -level set of the function

$$
g(x, y, z)=f(x, y)-z=x^{3}\left(y^{2}-1\right)+(x-y)^{3}-z .
$$

Thus the tangent plane can be recovered as the vectors orthogonal to the gradient of g. So we compute

$$
\nabla g(1,2,2)=(12,1,-1)
$$

and find the plane as those points $X=(x, y, z)$ which satisfy

$$
0=(X-(1,2,2)) \cdot(12,1,-1)=12 x+y-z-12 .
$$

(b) Find a unit vector which is normal to the graph at P.

Solution: The above solution already finds a normal vector for us as $\nabla g(1,2,2)=$ $(12,1,-1)$. We need merely normalize it to find a unit vector. The length of the gradient is $\sqrt{146}$, so the vector we want is $(12 / \sqrt{146}, 1 / \sqrt{146},-1 / \sqrt{146})$.
6. (a) Consider $h(x, y)=x^{y}$. Find the partial derivatives $\frac{\partial h}{\partial x}$ and $\frac{\partial h}{\partial y}$.

Solution: We compute that

$$
\frac{\partial h}{\partial x}=y x^{y-1}, \quad \text { and } \quad \frac{\partial h}{\partial x}=(\ln x) x^{y} .
$$

(b) Use (a) and the Chain Rule to find

$$
\frac{d}{d t}\left(f(t)^{g(t)}\right)
$$

Solution: Let $z(t)=(f(t), g(t))$. Then $f(t)^{g(t)}=h \circ z(t)$. So by (a) and the chain rule, we get that

$$
\begin{aligned}
\frac{d}{d t}(h \circ z) & =\frac{\partial h}{\partial x}(f(t), g(t)) \frac{d f}{d t}+\frac{\partial h}{\partial y}(f(t), g(t)) \frac{d g}{d t} \\
& =g(t)[f(t)]^{g(t)-1} f^{\prime}(t)+\ln (f(t))[f(t)]^{g(t)} g^{\prime}(t)
\end{aligned}
$$

