Instructions: This was a 2 hour, closed notes, closed book, and pledged exam.

1. Find and classify all the critical points of

$$
f(x, y)=\frac{1}{2} x^{2}-x y+\frac{1}{3} y^{3} .
$$

Solution: Since f is differentiable everywhere, the only critical points are the points where the gradient vanishes. $\nabla f(x, y)=\left(x-y, y^{2}-x\right)=(0,0)$ precisely at the points $(0,0)$ and $(1,1)$. Note $\frac{\partial^{2} f}{\partial x^{2}}=1, \frac{\partial^{2} f}{\partial y \partial x}=-1$, and $\frac{\partial^{2} f}{\partial y^{2}}=2 y$. Apply the second derivative test:

point	$\frac{\partial^{2} f}{\partial x^{2}}$	D	classification
$(0,0)$	1	-1	saddle
$(1,1)$	1	1	strict local min

2. Let $g(x, y)=2 e^{-x} \cos y$.
(a) Find the quadratic Taylor polynomial for $g(x, y)$ around the point $(0,0)$.

$$
\begin{aligned}
g(0,0) & =2 \\
\left.\frac{\partial g}{\partial x}\right|_{(0,0)} & =-\left.2 e^{-x} \cos y\right|_{(0,0)}=-2 \\
\left.\frac{\partial^{2} g}{\partial x^{2}}\right|_{(0,0)} & =\left.2 e^{-x} \cos y\right|_{(0,0)}=2 \\
\left.\frac{\partial^{2} g}{\partial y \partial x}\right|_{(0,0)} & =-\left.2 e^{-x} \sin y\right|_{(0,0)}=0 \\
\left.\frac{\partial g}{\partial y}\right|_{(0,0)} & =-\left.2 e^{-x} \sin y\right|_{(0,0)}=0 \\
\left.\frac{\partial^{2} g}{\partial y^{2}}\right|_{(0,0)} & =-\left.2 e^{-x} \cos y\right|_{(0,0)}=-2
\end{aligned}
$$

So the quadratic Taylor polynomial for $g(x, y)$ around $(0,0)$ is

$$
g\left(h_{1}, h_{2}\right) \approx 2-2 h_{1}+h_{1}^{2}-h_{2}^{2}
$$

(b) Use your answer in part (a) to estimate $2 e^{-0.2} \cos 0.4$.

We just evaluate $g(0.2,0.4) \approx 2-2(0.2)+(0.2)^{2}-(0.4)^{2}=2-.4+.04-.16=1.48$.
(The actual value is approximately 1.508202).
3. A tank is in the shape of a half-cylinder of radius 2 and height 3 . It is situated in \mathbb{R}^{3}, given by the inequalities $\sqrt{x^{2}+y^{2}} \leq 2, y \geq 0$, and $0 \leq z \leq 3$. The temperature at the point (x, y, z) is given by

$$
T(x, y, z)=2 y z^{2} \sqrt{x^{2}+y^{2}}{ }^{\circ} \mathrm{C} .
$$

Find the average temperature in the tank.

Solution: We describe the tank in cylindrical coordinates as $0 \leq r \leq 2,0 \leq \theta \leq \pi$, and $0 \leq$ $z \leq 3$. Recall the formula $[T] a v=\frac{\iiint_{W} T(x, y, z) d V}{\iiint_{W} d V}$.
We use cylindrical coordinates to compute

$$
\begin{aligned}
\iiint_{W} T(x, y, z) d V & =\int_{0}^{3} \int_{0}^{\pi} \int_{0}^{2} 2(r \sin \theta)\left(z^{2}\right)(r) r d r d \theta d z \\
& =2\left(\int_{0}^{3} z^{2} d z\right)\left(\int_{0}^{\pi} \sin \theta d \theta\right)\left(\int_{0}^{2} r^{3} d r\right) \\
& =2(2)(4)(9)=144
\end{aligned}
$$

The denominator (volume of region) is given by the formula $\operatorname{Vol}(W)=\frac{\pi \cdot 2^{2} \cdot 3}{2}=6 \pi$, or by computing

$$
\iiint_{W} d V=\int_{0}^{3} \int_{0}^{\pi} \int_{0}^{2} r d r d \theta d z=\left(\int_{0}^{3} d z\right)\left(\int_{0}^{\pi} d \theta\right)\left(\int_{0}^{2} r d r\right)=(3)(\pi)(2)=6 \pi
$$

Thus, $[T] a v=\frac{144}{6 \pi}=\frac{24}{\pi}{ }^{\circ} \mathrm{C}$.
4. Let T be the triangle with vertices $(0,0),(1,1)$ and $(0,1)$ and let $f(x, y)=x \sin \left(y^{3}\right)$.
(a) Find the correct limits of integration to set up $\iint_{T} f(x, y) d A$ as a double integral $\iint f(x, y) d x d y$.
Solution: $\int_{0}^{1} \int_{0}^{y} f(x, y) d x d y$.
(b) Find the correct limits of integration to set up $\iint_{T} f(x, y) d A$ as a double integral $\iint f(x, y) d y d x$.
Solution: $\int_{0}^{1} \int_{x}^{1} f(x, y) d y d x$.
(c) Compute $\iint_{T} f(x, y) d A$.

Solution: Use the set up from (a):

$$
\begin{aligned}
\iint_{T} f(x, y) d A & =\int_{0}^{1} \int_{0}^{y} x \sin \left(y^{3}\right) d x d y \\
& =\left.\int_{0}^{1} \frac{\sin \left(y^{3}\right)}{2} x^{2}\right|_{x=0} ^{y} d y \\
& =\int_{0}^{1} \frac{1}{2} y^{2} \sin \left(y^{3}\right) d y \\
& =-\left.\frac{\cos \left(y^{3}\right)}{6}\right|_{y=0} ^{1} \\
& =\frac{1-\cos 1}{6}
\end{aligned}
$$

5. Find the maximum and minimum values obtained by $f(x, y)=x+y^{2}$ on the ellipse $x^{2}+3 y^{2} \leq 9$.
Solution: First, find critical points in the interior $x^{2}+3 y^{2}<9$. Note $\nabla f(x, y)=(1,2 y)$ is never $(0,0)$, so there are no critical points in the interior.
Second, find critical points on the boundary $x^{2}+3 y^{2}=9$ using Lagrange Multipliers. Our constraint function is $g(x, y)=x^{2}+3 y^{2}$. Solve $\nabla f(x, y)=\lambda \nabla g(x, y)$, i.e. $(1,2 y)=$ $\lambda(2 x, 6 y)$. The second coordinate gives two possibilities: $y=0$ or $\lambda=1 / 3$. If $y=0$, then $x= \pm 3$ (from the constraint $x^{2}+3 y^{2}=9$). If $\lambda=1 / 3$, then $x=3 / 2$ (from $1=2 \lambda x$), and the constraint gives $y= \pm 3 / 2$. There are four critical points to investigate: $(\pm 3,0)$ and (3/2, $\pm 3 / 2)$.

(x, y)	$f(x, y)$
$(3,0)$	3
$(-3,0)$	-3
$(3 / 2,3 / 2)$	$15 / 4$
$(3 / 2,-3 / 2)$	$15 / 4$

Thus the absolute maximum value of f on boundary is $15 / 4$, and the absolute minimum value on the boundary is -3 .
Since there are no critical points from the interior, these maximum and minimum boundary values are also the maximum and minimum values throughout the entire region.
6. The region S is cut from a solid ball of radius 1 centered at the origin. S is the region cut by the inequalities $z \geq 0$ and $y \geq x$. (S is one-quarter of the entire ball, and contains the point ($0,1,0$).)
The mass density of S at a point (x, y, z) is given by the function $\delta(x, y, z)=30 z^{2} \mathrm{~kg} / \mathrm{m}^{3}$.
(a) Find the total mass of S.

Solution: The total mass is given by $\iiint_{S} \delta(x, y, z) d V$. Note that S is described in spherical coordinates by $0 \leq \rho \leq 1, \pi / 4 \leq \theta \leq 5 \pi / 4$, and $0 \leq \phi \leq \pi / 2$. Thus

$$
\begin{aligned}
\iiint_{S} \delta(x, y, z) d V & =\int_{0}^{\pi / 2} \int_{\pi / 4}^{5 \pi / 4} \int_{0}^{1} 30(\rho \cos \phi)^{2} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =30\left(\int_{0}^{\pi / 2} \cos ^{2} \phi \sin \phi d \phi\right)\left(\int_{\pi / 4}^{5 \pi / 4} d \theta\right)\left(\int_{0}^{1} \rho^{4} d \rho\right) \\
& =30\left(\left.\frac{-\cos ^{3} \phi}{3}\right|_{0} ^{\pi / 2}\right)(\pi)\left(\frac{1}{5}\right) \\
& =2 \pi \mathrm{~kg}
\end{aligned}
$$

(b) Find the average mass density of S.

Solution: Average mass density is

$$
[\delta]_{\mathrm{av}}=\frac{\iiint_{S} \delta(x, y, z) d V}{\iiint_{S} d V}=\frac{2 \pi \mathrm{~kg}}{\operatorname{Vol}(S)}=\frac{2 \pi \mathrm{~kg}}{\pi / 3 \mathrm{~m}^{3}}=6 \mathrm{~kg} / \mathrm{m}^{3}
$$

