1. Let $f(x, y, z)$ be a scalar function, and let $\mathbf{F}(x, y, z)$ be a vector field. (Assume both f and \mathbf{F} have continuous partial derivatives of all orders.) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^{3}.
(a) curl grad $f=\mathbf{0}$.

Solution: True.
(b) $\operatorname{div} \operatorname{grad} f=0$.

Solution: False. For example if $f(x, y, z)=x^{2}$, then grad $f=(2 x, 0,0)$ and $\operatorname{div} \operatorname{grad} f=2$.
(c) $\operatorname{div} \operatorname{curl} \mathbf{F}=0$.

Solution: True.
(d) Let C be an oriented curve. The path integral of f along C does not change when the orientation of C is reversed.

Solution: True.
(e) Let C be an oriented curve. The line integral of \mathbf{F} along C does not change when the orientation of C is reversed.

Solution: False. The integral changes by a minus-sign.
(f) The expression $\mathbf{u} \cdot \mathbf{v}$ is a vector.

Solution: False.
(g) The expression $\mathbf{u} \times \mathbf{v}$ is a vector.

Solution: True.
(h) The expression $(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}$ is a vector.

Solution: True. First note that $(\mathbf{v} \cdot \mathbf{w})$ is a scalar, so $(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}$ is the scalar product of the vector \mathbf{u} with the scalar $(\mathbf{v} \cdot \mathbf{w})$.
(i) Let S be an oriented surface. The quantity $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ is a vector.

Solution: False.
(j) Let S be an oriented surface. The quantity $\iint_{S} f d S$ is a vector.

Solution: False.
2. Let $\mathbf{F}(x, y, z)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, 0\right)$.
(a) Show curl $\mathbf{F}=(0,0,0)$.
(b) Let C be the unit circle in the $x y$-plane, oriented clockwise. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$.
(c) Using your answer from (b), explain why \mathbf{F} is not a gradient field, even though curl $\mathbf{F}=(0,0,0)$.

Solution:

(a) This is a straight-forward computation:

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}} & 0
\end{array}\right) \\
& =-\mathbf{i} \frac{\partial}{\partial z} \frac{x}{x^{2}+y^{2}}+\mathbf{j} \frac{\partial}{\partial z} \frac{-y}{x^{2}+y^{2}}+\mathbf{k}\left(\frac{\partial}{\partial x} \frac{x}{x^{2}+y^{2}}-\frac{\partial}{\partial y} \frac{-y}{x^{2}+y^{2}}\right) \\
& =\mathbf{k}\left(\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2}+y^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) \\
& =(0,0,0) .
\end{aligned}
$$

(b) We first have to parametrize C. We take

$$
\mathbf{c}(t)=(\cos (-t), \sin (-t)), t \in[0,2 \pi]
$$

(note that we need the $-t$ to ensure that we go clockwise). We then compute

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{s} & =\int_{\substack{t=0 \\
t=2 \pi}}^{t=2 \pi} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t \\
& =\int_{\substack{t=0 \\
t=2 \pi}}(-\sin (-t), \cos (-t), 0) \cdot(\sin (-t),-\cos (-t), 0) d t \\
& =\int_{t=0}^{t=0}-1 d t=-2 \pi
\end{aligned}
$$

(Note that one could also choose the usual clockwise parametrization $\mathbf{c}(t)=(\cos (t), \sin (t)), t \in$ $[0,2 \pi]$, and then changed the integral by a minus-sign.)
(c) If \mathbf{F} was a gradient field, then any line integral over a closed curve would be zero. But in (b) we saw that this is not the case.
3. The surface S is parameterized by $\boldsymbol{\Phi}(u, v)=\left(e^{u}-2,2 v+3,5+u^{2}+v^{2}\right)$ with $u, v \in \mathbb{R}$.
(a) Determine the equation of the tangent plane to $(-1,5,6) \in S$.
(b) Find all points on S for which the tangent plane is parallel to the $x y$-plane.

Solution:
(a) We compute

$$
\begin{aligned}
\mathbf{T}_{u} & =\left(e^{u}, 0,2 u\right) \\
\mathbf{T}_{v} & =(0,2,2 v) \\
\mathbf{T}_{u} \times \mathbf{T}_{v} & =\left(-4 u,-2 v e^{u}, 2 e^{u}\right)
\end{aligned}
$$

Now now note that $\Phi(u, v)=(-1,5,6)$ for $u=0, v=1$ (which can be seen by looking at the first two coordinates).
For $u=0, v=1$ we have

$$
\mathbf{T}_{u} \times \mathbf{T}_{v}=(0,-2,2)
$$

This is the normal vector to the tangent plane at $(-1,5,6)$. The equation of the tangent plane is therefore given by

$$
(x-(-1), y-5, z-6) \cdot(0,-2,2)=0
$$

which simplifies to

$$
-2 y+2 z-2=0
$$

(b) First note that the tangent plane is parallel to the $x y$-plane if the z-components of \mathbf{T}_{u} and \mathbf{T}_{v} are zero. But this means that $2 u=0$ and $2 v=0$. So the only possibility is $u=0, v=0$. The corresponding point on S is $\Phi(0,0)=(-1,3,5)$.
4. Let $f(x, y)=\frac{1}{3} x^{3}+y \sqrt{2}+3$, and let D be the triangle with vertices $(0,0),(1,0)$, and $(1,1)$. Let S be the surface given by the graph of $f(x, y)$ over D.
(a) Find a parametrization of S.
(b) Compute $\iint_{S} 4 x^{2} d S$.

Solution:
(a) The parametrization is given by

$$
\Phi(x, y)=\left(x, y, \frac{1}{3} x^{3}+y \sqrt{2}+3\right)
$$

where the domain for x, y is given by D, i.e. by the triangle with vertices $(0,0),(1,0)$, and $(1,1)$.
(b) Let's first compute $\left\|\mathbf{T}_{x} \times \mathbf{T}_{y}\right\|$:

$$
\begin{aligned}
\mathbf{T}_{x} & =\left(1,0, x^{2}\right) \\
\mathbf{T}_{y} & =(0,1, \sqrt{2}) \\
\mathbf{T}_{x} \times \mathbf{T}_{y} & =\left(-x^{2},-\sqrt{2}, 1\right) \\
\left\|\mathbf{T}_{x} \times \mathbf{T}_{y}\right\| & =\sqrt{3+x^{4}}
\end{aligned}
$$

We compute

$$
\iint_{S} 4 x^{2} d S=\int_{x=0}^{x=1} \int_{y=0}^{y=x} 4 x^{2} \sqrt{3+x^{4}} d y d x=\int_{x=0}^{x=1} 4 x^{3} \sqrt{3+x^{4}} d x
$$

Now let $u=3+x^{4}$ and we get

$$
\int_{x=0}^{x=1} 4 x^{3} \sqrt{3+x^{4}} d x=\int_{u=3}^{u=4} \sqrt{u} d u=\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{u=3}^{u=4}=\frac{2}{3}\left(4^{\frac{3}{2}}-3^{\frac{3}{2}}\right) .
$$

5. Consider the solid hemisphere formed by taking the portion of the unit ball with $y \geq 0$. Let S be the surface of this region (so that S is a hemisphere, together with a flat 'base' in the $x z$-plane). Find the flux of the vector field $\mathbf{V}(x, y, z)=-z \mathbf{i}+\mathbf{j}+x \mathbf{k}$ out of the surface S.

You may find the following identity useful: $\quad \sin ^{2} \alpha=\frac{1}{2}(1-\cos 2 \alpha)$.
Solution: We have to break this problem into two parts. We first integrate over the hemisphere, and then we integrate over the flat base.
For the hemisphere we take the parametrization

$$
\Phi(\theta, \phi)=(\cos (\theta) \sin (\phi), \sin (\theta) \sin (\phi), \cos (\phi))
$$

with $\theta \in[0, \pi]$ and $\phi \in[0, \pi]$. We compute

$$
\begin{aligned}
\mathbf{T}_{\theta} & =(-\sin (\theta) \sin (\phi), \cos (\theta) \sin (\phi), 0) \\
\mathbf{T}_{\phi} & =(\cos (\theta) \cos (\phi), \sin (\theta) \cos (\phi),-\sin (\phi)) \\
\mathbf{T}_{\theta} \times \mathbf{T}_{\phi} & =\left(-\cos (\theta) \sin ^{2}(\phi),-\sin (\theta) \sin ^{2}(\phi),-\sin (\phi) \cos (\phi)\right) \\
& =-\sin (\phi)(\cos (\theta) \sin (\phi), \sin (\theta) \sin (\phi), \cos (\phi)) .
\end{aligned}
$$

Note that $T_{\theta} \times T_{\phi}$ points inward (this can be seen by considering the last line and noticing that $-\sin (\phi)$ is negative). So it has the wrong orientation. We can fix this by putting a minus-sign into the formula. So the flux through the hemisphere is given by

$$
\begin{aligned}
& -\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\pi} \mathbf{V}(\Phi(\theta, \phi)) \cdot\left(\mathbf{T}_{\theta} \times \mathbf{T}_{\phi}\right) d \phi d \theta \\
& =-\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\pi}(-\cos (\phi), 1, \cos (\theta) \sin (\phi)) \cdot\left(-\cos (\theta) \sin ^{2}(\phi),-\sin (\theta) \sin ^{2}(\phi),-\sin (\phi) \cos (\phi) d \phi d \theta\right. \\
& =-\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\pi}-\sin (\theta) \sin ^{2}(\phi) d \phi d \theta \\
& =-\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\pi}-\frac{1}{2} \sin (\theta)(1-\cos (2 \phi)) d \phi d \theta \\
& =-\int_{\theta=0}^{\theta=\pi}\left[-\frac{1}{2} \sin (\theta)\left(\phi-\frac{1}{2} \sin (2 \phi)\right)\right]_{\phi=0}^{\phi=\pi} d \theta \\
& =-\int_{\theta=0}^{\theta=\pi}-\frac{\pi}{2} \sin (\theta) d \theta \\
& =-\left[\frac{\pi}{2} \cos (\theta)\right]_{\theta=0}^{\theta=\pi} \\
& =\pi \text {. }
\end{aligned}
$$

Another way to approach this part of the problem is to see that $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ is the unit normal vector to the sphere at the point (x, y, z). Thus $\mathbf{V} \cdot \mathbf{n}=y$. To obtain the flux,
one integrates this (as a scalar surface integral) in spherical coordinates. (It is a little bit faster this way.)

Now let's integrate over the base. The base lies in the $x z$-plane and the normal vector is $-\mathbf{j}$ (since outside is to the left), since the \mathbf{j}-component of \mathbf{V} is constant one, we see that the flux integral is just -1 times the area of the base, which equals $-\pi$.

To compute the flux over S we have to add up the results from the hemisphere and the base, and we get that the flux equals $\pi-\pi=0$.
A more formal approach is to find a parametrization again. We could take

$$
\Phi(r, \theta)=(r \cos (\theta), 0, r \sin (\theta))
$$

where $r \in[0,1]$ and $\theta \in[0,2 \pi]$. Then

$$
\begin{aligned}
\mathbf{T}_{r} & =(\cos (\theta), 0, \sin (\theta)) \\
\mathbf{T}_{\theta} & =(-r \sin (\theta), 0, r \cos (\theta)) \\
\mathbf{T}_{r} \times \mathbf{T}_{\theta} & =(0,-r, 0)
\end{aligned}
$$

This is the correct orientation, since $(0,-1,0)$ points outside. So we have:

$$
\begin{aligned}
\iint \mathbf{V} \cdot d \mathbf{S} & =\int_{\substack{r=0 \\
r=1}}^{r=1} \int_{\theta=0}^{r=1} \mathbf{V}(\Phi(r, \theta)) \cdot\left(\mathbf{T}_{r} \times \mathbf{T}_{\theta}\right) d \theta d r \\
& =\int_{\substack{r=0 \\
r=1}} \int_{\theta=0}^{r=1}(-r \sin (\theta), 1, r \cos (\theta)) \cdot(0,-r, 0) d \theta d r \\
& =\int_{r=0}^{\theta=2 \pi} \int_{\theta=0}-r d \theta d r=-\pi .
\end{aligned}
$$

6. Let $\mathbf{c}(t)=\left(1,-t^{2}, \cos t\right), 0 \leq t \leq \pi$. Evaluate

$$
\int_{\mathbf{c}} \sin z d x-y^{2} d y+3 x z d z
$$

Solution: We compute

$$
\begin{aligned}
\int_{\mathbf{c}} \sin z d x-y^{2} d y+3 x z d z & =\int_{\substack{t=0 \\
t=\pi}}^{t=\pi} \sin (\cos (t)) \frac{d}{d t}(1)-\left(-t^{2}\right)^{2} \frac{d}{d t}\left(-t^{2}\right)+3 \cos (t) \frac{d}{d t}(\cos (t)) d t \\
& \left.=\int_{\substack{t=0}} 2 t^{5}-3 \cos (t) \sin (t)\right) d t \\
& =\left[\frac{t^{6}}{3}+\frac{1}{2} 3 \cos (t)^{2}\right]_{t=0}^{t=\pi} \\
& =\frac{\pi^{6}}{3} .
\end{aligned}
$$

