
Solutions to the Final Examination
Math 381:

Introduction to Partial Differential Equations
Rice University, Fall 2003

Problem 1:

a) This is a fourth order equation.

b) Many correct responses are possible. An example would be

∂z

∂x
+ 12

∂z

∂y
= 3z.

c) Again, many correct answers are possible. An example would be

∂z

∂x
+ 12

∂z

∂y
= e3z.

d) Legendre’s equation of order n is

(1− x2) · y′′(x)− 2x · y′(x) + n(n + 1)y(x) = 0, −1 ≤ x ≤ 1.

e) Bessel’s equation of order n is

y′′(x) +
1
x

y′(x) +
(

1− n2

x2

)
y(x) = 0, 0 ≤ x ≤ 1.

f) Two functions f and g are orthogonal over the interval [0, 1] with respect
to the weight function ρ(x) = x when

∫ 1

0

xf(x)g(x) dx = 0.

g) The Fourier coefficients of a function f are the numbers

A0 = a0/2 =
1
2π

∫ π

−π

f(x) dx,

an =
1
π

∫ π

−π

f(x) cos(nx) dx, and

bn =
1
π

∫ π

−π

f(x) sin(nx) dx.

h) If Pn(x) denotes the nth Legendre polynomial, then the Legendre coeffi-
cients are the numbers

an =
2n + 1

2

∫ 1

−1

f(x)Pn(x) dx.
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i) If J0(x) is the Bessel function of the first kind and order zero and its
positive roots are enumerated as λ1 < λ2 < λ3 < . . . , then the coefficients
asked for are the numbers

an =
2

[J ′0(λn)]2

∫ 1

0

xf(x)J0(λn · x) dx.

j) A function is said to be of exponential order if there are positive constants
M, s0, T such that

|f(t)| < Mes0t, for all t > T .

If g is of exponential order, we define the Laplace transform of g by

g(s) =
∫ ∞

0

e−stf(t) dt,

for all s large enough that this integral exists.

Problem 2: We give outlines of answers for all three options.

Option One: The statement of Parseval’s Theorem for Bessel series of order
zero was the content of a homework exercise in problem set # 6. See
the relevant exercise for a statement. The content of this result is that
the mean square error of a partial sum of Bessel series approximation ap-
proaches zero as the number of terms increases, so that, at least in a mean
square error sense, Bessel series do a pretty good job of approximating an
arbitrary function. In terms of linear algebra, it says that we can view
the scaled Bessel functions J0(λi · x) form a complete basis of the infinite
dimensional vector space of functions on the interval [0, 1].

Option Two: The method of characteristics is based on the following geomet-
ric principle. Given a quasi-linear first order partial differential equation

P (x, y, z)
∂z

∂x
+ Q(x, y, z)

∂z

∂y
= R(x, y, z),

we reinterpret the equation as a statement that the normal vector (ux, uz,−1)
to an integral surface u(x, y, z) = C is perpendicular to the characteristic
vector field V = (P (x, y, z), Q(x, y, z), R(x, y, z)). This means that the
integral curves of this vector field must lie entirely inside any integral sur-
face which they intersect. So, to solve the partial differential equation,
we need only find out what these integral curves are and learn to bundle
them together into nice families to make surfaces.

The integral curves of the characteristic vector field are called character-
istic curves and are defined by a system of ordinary differential equations.
Solving one of these ordinary differential equations determines a family of
surfaces in space of the form ui(x, y, z) = Ci. A characteristic curve is
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formed when we take the intersection of a surface from one family with
a surface of the other family. As a practical matter, one needs to decide
on the functional relationship between the parameter C1 which tells you
which surface from the first family to use, and the parameter C2 which
tells you which surface from the second family to use. This gives rise to
an ”arbitrary” function in the general solution to the partial differential
equation.

Option Three: The Gibbs phenomenon is a quantification of the observation
that a Fourier series has trouble approximating a function uniformly well
near a point of discontinuity. Gibbs investigated the function Ψ(x) defined

as an odd, 2π-periodic extension of
1
2
(π − x), 0 < x < π. Gibbs showed

that near the discontinuity zero, partial sums of the Fourier series for
Ψ always miss the function and form waves. More importantly, as the
number of terms increases, the size of the ”misses” does not go to zero!
Gibbs calculated the limiting value of the size of the misses precisely, the
first one being about (0.09)π, or about 9% of the size of the jump in Ψ at
x = 0.

Gibbs’ phenomenon is important because it shows the limits of how well
one can approximate a discontinuous function using Fourier series. First,
it shows that we never get uniform convergence of the Fourier series of
a function with a jump. Most importantly, Gibbs’ phenomenon gives a
measure of how bad the error will always be, and thus gives us some way
to deal with convergence issues near discontinuities. Even if things must
be bad, we at least know precisely how bad they will be.

Problem 3:

a) This equation was studied in homework assignment # 1. The general
solution is of the form z = x · f(xy), where f is an arbitrary C1 function.

b) We substitute in the required condition to find x3 = z = x · f(xy) =
x · f(x2). This means that we must take f(u) = u, so our solution is
z = x2y.

c) The curve y = 1/x is the projection of a characteristic curve. (The other
part of the condition does not matter here, the equation is linear, not
just quasi-linear.) This means there is the standard duality. If our curve
is a characteristic, there are infinitely many solutions, and if not, there
are none. Comparing with the work for part (a), we see that the curve
in question is not a characteristic, so there is no solution meeting these
conditions.
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Problem 4:

a) We have several conditions to meet.




∂2z

∂t2
= a2

(
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2

∂2z

∂θ2

)
, 0 ≤ t < ∞, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π,

z(t, r, θ + 2π) = z(t, r, θ), 0 ≤ t < ∞, 0 ≤ r ≤ 1,
z(t, 1, θ) = 0, 0 ≤ t < ∞, 0 ≤ θ ≤ 2π,
z(0, r, θ) = 0 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1,
∂z

∂t
(0, r, θ) = φ(r, θ) 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1.

b) Since the boundary values are rotationally symmetric, we seek a solution
which is rotationally symmetric, too. This drops the final term of the first
equation from consideration, and removes the periodicity condition.

We try to separate the variables by setting z(t, r) = T (t) · R(r). The
differential equation then forces that

RT ′′ = a2

(
R′′T +

1
r
R′T

)
.

This is equivalent to
T ′′

a2T
=

R′′ + R′/r

R
.

Since the right hand side is independent of t and the left hand side is
independent of r, this quantity must be a constant. Calling the constant
C, we get the following pair of ordinary differential equations to solve.

{
T ′′ = Ca2T, 0 ≤ t < ∞
R′′ +

1
r
R′ − CR = 0, 0 ≤ r ≤ 1.

The first equation has either trigonometric functions or exponentials as
general solution, depending on the sign of C. Since the problem is about
a physical drumhead, it is more appropriate to have the bounded trigono-
metric functions than the unbounded exponential functions. So we take
C = −λ2 to be negative.

Thus the first equation has general solution of the form A cos(aλt) +
B sin(aλt). The second equation has only one solution which is bounded
for all r, it is J0(λr), where J0 denotes the Bessel function of the first kind
and order zero. We deduce that our fundamental product solution should
have the form

J0(λr) (A cos(aλt) + B sin(aλt)) .

Now we apply the remaining boundary conditions. The condition that
the drumhead is initially still implies that A = 0. So our fundamental
solution has the form J0(λr) sin(aλt). Then, the condition about the edge
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of the drumhead being fixed means that λ must be a root of the equation
J0(x) = 0.

So if we enumerate the roots of J0(x) = 0 as λ1 < λ2 < λ3 < . . ., we see
that the formal solution of our equations so far is the infinite sum

z(t, r) =
∞∑

i=1

AiJ0(λir) sin(aλit).

In order to meet the last boundary condition, we must choose the coeffi-
cients Ai so that

−J0(λ1 · r) = f(r, θ) = zt(0, r) =
∞∑

i=1

AiaλiJ0(λir),

that is, we should have that aλiAi is the ith Bessel series coeffiecient of
−J0(λ1 · r). But this expression is its own Bessel series, so we don’t need
to compute it. (If you try to compute it, the orthogonality of Bessel series
immediately gives that all the coefficients vanish except for the first one.)
Therefore, we must choose A1 = −1/(aλ1), and all other Ai are zero. The
solution to our problem is the function

z(t, r) =
−1
aλ1

J0(λ1r) sin(aλ1t).

Problem 5: Taking the Laplace transform of the differential equation we find

∂2φ

∂x2
=

1
c2

(
−∂φ

∂t
(x, 0)− sφ(x, 0) + s2φ(x, s)

)
− s

s2 + ω2
=

s2

c2
φ(x, s)− s

s2 + ω2
.

This is an inhomogeneous ordinary differential equation in x, and the inhomo-
geneous term is a constant (in x). The associated homogeneous equation has
solution A(s)esx/c +B(s)e−sx/c, so we look for a solution to our equation of the
form

A(s)esx/c + B(s)e−sx/c + C(s).

A simple check shows that this works if we choose C(s) =
c2

s(s2 + ω2)
. It is

impossible for the first term to be a transform of any function since it does not
decay to zero as s increases for large values of x. Therefore, our solution has
transform of the form

φ(x, s) = B(s)e−sx/c +
c2

s(s2 + ω2)
.

To find B(s), we check the remaining boundary condition. Its transform is

φ(x, s) = 0, which means that B(s) = − c2

s(s2 + ω2)
. This means that the

Laplace transform of our solution is

φ(x, s) = − c2

s(s2 + ω2)
e−sx/c +

c2

s(s2 + ω2)
.
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We must find the inverse Laplace transform of this expression to finish the

problem. The inverse transform of
c2

s(s2 + ω2)
is

c2

ω

∫ t

0

sin(ωu) du = − c2

ω2
cos(ωt) +

c2

ω2
.

So by the translation property of Laplace transforms, we see that the answer is

φ(x, t) = −




0, 0 ≤ t ≤ x/c

− c2

ω2
cos(ω(t− x/c)) +

c2

ω2
, t > x/c



− c2

ω2
cos(ωt) +

c2

ω2

=





c2

ω2
− c2

ω2
cos(ωt), 0 ≤ t ≤ x/c

c2

ω2
cos(ω(t− x/c))− c2

ω2
cos(ωt), t > x/c.

It is not difficult to check that this satisfies all of the conditions. Note that this
solution has a ”corner” in it corresponding to when the front of the travelling
wave passes by.
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