Math 381: First Exam

September 26, 2003

Read the directions to each problem carefully. Show your work when necessary. This exam has 8 questions on 5 pages and lasts 50 minutes.

Name:
Pledge:

Problem 1:(6 points) Identify the order of the following partial differential equations:
a) $\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial x}+4 z^{2} \frac{\partial z}{\partial y}=0$
b) $\frac{\partial^{7} z}{\partial x \partial y^{6}} \frac{\partial^{14} z}{\partial x^{14}}=-1$.
c) $\left(\frac{\partial z}{\partial x}-y\right)\left(\frac{\partial z}{\partial y}-x\right)=0$.

Problem 2:(6 points) Show the work necessary to verify that for arbitrary C^{2} functions f and g, the expression

$$
y=f(x+a t)-g(x-a t)
$$

is a solution of the partial differential equation

$$
\frac{\partial^{2} y}{\partial t^{2}}-a^{2} \frac{\partial^{2} y}{\partial x^{2}}=0,
$$

where a is a positive constant.

Problem 3:(6 points) Write a partial differential equation of first order which is quasi-linear but not linear.

Problem 4: (15 points) Find the general solution of the following partial differential equation in a form solved for z.

$$
\frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=e^{-z}
$$

Problem 5: Consider the partial differential equation

$$
\begin{equation*}
y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=0 \tag{1}
\end{equation*}
$$

a) (6 points) Find equations which describe the characteristic curves of this equation.
b) (3 points) Show that the positive x-axis, $\sigma(t)=(t, 0), t \geq 0$, is free for the initial condition $f(t)=t^{2}$.
c) (6 points) Find the integral surface of equation (1) which contains the curve $y=0, z=x^{2}$. Draw a picture of this surface, or describe it well in a sentence.
d) (2 points) How many solutions to equation (1) are there which satisfy the initial conditions that $z=25$ when $x^{2}+y^{2}=5$?

Problem 6:(20 points) Find the Fourier coefficients of the square wave function

$$
w(x)=\left\{\begin{array}{cc}
1, & 0 \leq x \leq \pi \\
-1, & -\pi<x<0
\end{array}\right.
$$

and write down the first four terms of the Fourier series.

Problem 7:(10 points) State the all-important corollary to Riemann's theorem. (Sometimes we call this the Riemann-Lebesgue Lemma.)

Problem 8:(20 points) In a paragraph or two, discuss the nature of convergence of a Fourier series of a function which is continuous except for a finite number of finite size jumps. Be sure to cite examples and state results clearly. You need not prove anything.

