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Math 381: First Exam

September 26, 2003

Solutions

Problem 1: The equations are second order, fourteenth order and first order, respectively.

Problem 2: We compute the derivatives

∂2y

∂x2
= f ′′(x + at)− g′′(x− at),

∂2y

∂t2
= a2f ′′(x + at)− a2g′′(x− at).

So then it is not hard to check that

∂2y

∂t2
− a2 ∂2y

∂x2
= a2f ′′(x + at)− a2g′′(x− at)− a2 (f ′′(x + at)− g′′(x− at)) = 0.

Problem 3: We need something which is linear in the first paritals, but not jointly linear in the
first partials and z. So,

z
∂z

∂x
+

∂z

∂y
= 0.

Problem 4: This equation is quasilinear, so we use the method of characteristics. The CVF is
V = (1,−y, e−z), and the characteristic ODE’s are

dx

1
=

dy

−y
=

dz

e−z
.

We solve dx = ez dz with x + C1 = ez, and −dx = dy
y with −x + C2 = ln(y). So, writing C1 as

an arbitrary function of C2, we obtain

z = ln (x + f(x + ln(y))) .

Problem 5:

a) The characteristic vector field is V = (y,−x, 0), so the characteristic ODE’s are

dx

y
=

dy

−x
=

dz

0
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The last bit means that dz = 0, so z = C1 is a constant. We then solve the other equation

x dx = −y dy

to get x2 + y2 = C2. Thus, the characteristics are defined by
{

z = C1

x2 + y2 = C2

}
, where C1 and C2 are constants.

These curves are circles lying in the horizontal planes parallel to the xy-plane and with
centers on the z-axis.

b) We check the condition for freeness of the curve σ by computing

P (σ1(t), σ2(t), f(t)) · σ′2(t)−Q(σ1(t), σ2(t), f(t)) · σ′1(t) = (σ2(t)) · (0)− (−σ1(t)) · (1) = t.

We are only interested in the positive x-axis, where t > 0, so this quantity does not vanish,
and the curve is free.

c) Using the work in (a), we see that the general solution can be written as z = f(x2 + y2).
To meet our initial conditions, we must have x2 = f(x2 + 0), so f(u) = u is the identity
function. This means that our integral surface is defined by the equation z = x2 + y2. This
surface is a paraboloid of revolution, where the axis of revolution is the z-axis.

d) There are infinitely many solutions. Namely, we can use z = f(x2 + y2) where f is an
arbitrary function which satisfies f(5) = 25.

Problem 6: This was a homework problem. You can find the answer in the solutions to homework
#2.

Problem 7: The correct statement is

Let f be a 2π periodic function for which both f and f2 are integrable. Then

lim
n→∞

∫ π

−π

f(x) sin
(

(n +
1
2
)x

)
= 0.

Problem 8: I’m not going to write an example essay, but a good answer should include a
discussion of convergence at a point of continuity and at a point of discontinuity. Also, it should
have something about uniform convergence for broken line functions, and something about the
Gibbs phenomenon. It is important to make precise statements of the results we have from class.

It might also be nice to include something about Césaro summability and Féjer’s theorem.


