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Math 381: Second Exam

November 5-10, 2003

Solutions

Problem 1: We rewrite our problem in polar coordinates because these are adapted to the disk
D. Then our boundary condition is g(1, θ) = (cos θ)2. Following the developments in class, we
know that the solution to Laplace’s equation in D which meets this boundary condition is

u(r, θ) =
a0

2
+

∞∑

i=1

(an cos(nθ) + bn sin(nθ)) rn

where the constants a0/2, an and bn are chosen to be the Fourier series coefficients of f(θ) =
g(1, θ) = (cos θ)2. Using a little bit of trigonometry, we see that the Fourier series of f is

f(θ) = (cos θ)2 =
1
2

+
1
2

cos(2θ).

(This is just the half-angle identity. You can get this lots of ways, even by integrating for Fourier
coefficients. I remembered it as the k = 1 special case of the identity cos(k + 1)θ + cos(k − 1)θ =
2 cos θ cos kθ which we used in class while working out the Poisson integral formula.) So the answer
is

u(r, θ) =
1
2

+
1
2

cos(2θ)r2.

Unwinding the half-angle identity, we see that this is the same as

u(r, θ) =
1
2

+
r2

2
(
2(cos θ)2 − 1

)
=

1− r2

2
+ (r cos θ)2.

In rectangular coordinates, this is

u(x, y) =
1 + x2 − y2

2
.

Problem 2: We assume that our solution has the form of a product y(t, x) = T (t) · F (x). Then
the differential equation requires that the functions T and F satisfy

T ′′ · F + kT ′ · F = a2T · F ′′.
We rearrange this to read

T ′′ + T ′

T
= a2 F ′′

F
.

Since the right hand side is independent of t and the left hand side is independent of x, we conclude
that this above quantity should be constant. If we write C for this constant, we need to solve the
following two ordinary differential equations:

T ′′ + k · T ′ − C · T = 0, and a2F ′′ − C · F = 0.
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Problem 3: Translating to polar coordinates (r, θ), we see that our boundary condition is
T (r, θ) = r sin θ(r cos θ)3 on the boundary. But the boundary is the curve r = 1. So our bound-
ary condition is f(θ) = T (1, θ) = sin θ(cos θ)3. Using the Poisson integral formula for harmonic
functions in the disk, we get that

T (0, θ) =
1
2π

∫ 2π

0

sin φ(cos φ)3 · 1− 0
1− 0 + 0

dφ = 0.

So the answer is that the temperature at the center of the disk is zero degrees Fahrenheit.

Problem 4: Using Rodrigues’ formula and the theorem following it in class (Theorem 5), we have
that

a6 =
13
2
· (−1)6

26 · 6!

∫ 1

−1

d6

dx6
(f (−6))(x) · (x2 − 1)6 dx.

But by the construction, the sixth derivative of f is equal to x 7→ (x2 − 1)−6. Therefore, we get
that

a6 =
13
2

1
26 · 6!

∫ 1

−1

(x2 − 1)−6(x2 − 1)6 dx =
13

26 · 6!

Problem 5: Since f is continuous on the closed interval [−1, 1], it is certainly bounded and has
both f and f2 integrable. By Parseval’s theorem, we see that the answer is

∞∑

k=0

2
2k + 1

a2
k =

∫ 1

−1

f(t)2 dt.

Problem 6: Using the recurrence formula for Legendre polynomials, we see that the answer is

xP101(x) =
102
203

P102(x) +
101
203

P100(x).


