Math 381: Second Exam

November 5-10, 2003

Solutions

Problem 1: We rewrite our problem in polar coordinates because these are adapted to the disk \mathcal{D}. Then our boundary condition is $g(1, \theta)=(\cos \theta)^{2}$. Following the developments in class, we know that the solution to Laplace's equation in \mathcal{D} which meets this boundary condition is

$$
u(r, \theta)=\frac{a_{0}}{2}+\sum_{i=1}^{\infty}\left(a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right) r^{n}
$$

where the constants $a_{0} / 2, a_{n}$ and b_{n} are chosen to be the Fourier series coefficients of $f(\theta)=$ $g(1, \theta)=(\cos \theta)^{2}$. Using a little bit of trigonometry, we see that the Fourier series of f is

$$
f(\theta)=(\cos \theta)^{2}=\frac{1}{2}+\frac{1}{2} \cos (2 \theta) .
$$

(This is just the half-angle identity. You can get this lots of ways, even by integrating for Fourier coefficients. I remembered it as the $k=1$ special case of the identity $\cos (k+1) \theta+\cos (k-1) \theta=$ $2 \cos \theta \cos k \theta$ which we used in class while working out the Poisson integral formula.) So the answer is

$$
u(r, \theta)=\frac{1}{2}+\frac{1}{2} \cos (2 \theta) r^{2}
$$

Unwinding the half-angle identity, we see that this is the same as

$$
u(r, \theta)=\frac{1}{2}+\frac{r^{2}}{2}\left(2(\cos \theta)^{2}-1\right)=\frac{1-r^{2}}{2}+(r \cos \theta)^{2}
$$

In rectangular coordinates, this is

$$
u(x, y)=\frac{1+x^{2}-y^{2}}{2}
$$

Problem 2: We assume that our solution has the form of a product $y(t, x)=T(t) \cdot F(x)$. Then the differential equation requires that the functions T and F satisfy

$$
T^{\prime \prime} \cdot F+k T^{\prime} \cdot F=a^{2} T \cdot F^{\prime \prime}
$$

We rearrange this to read

$$
\frac{T^{\prime \prime}+T^{\prime}}{T}=a^{2} \frac{F^{\prime \prime}}{F}
$$

Since the right hand side is independent of t and the left hand side is independent of x, we conclude that this above quantity should be constant. If we write C for this constant, we need to solve the following two ordinary differential equations:

$$
T^{\prime \prime}+k \cdot T^{\prime}-C \cdot T=0, \quad \text { and } \quad a^{2} F^{\prime \prime}-C \cdot F=0
$$

Problem 3: Translating to polar coordinates (r, θ), we see that our boundary condition is $T(r, \theta)=r \sin \theta(r \cos \theta)^{3}$ on the boundary. But the boundary is the curve $r=1$. So our boundary condition is $f(\theta)=T(1, \theta)=\sin \theta(\cos \theta)^{3}$. Using the Poisson integral formula for harmonic functions in the disk, we get that

$$
T(0, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin \phi(\cos \phi)^{3} \cdot \frac{1-0}{1-0+0} d \phi=0
$$

So the answer is that the temperature at the center of the disk is zero degrees Fahrenheit.

Problem 4: Using Rodrigues' formula and the theorem following it in class (Theorem 5), we have that

$$
a_{6}=\frac{13}{2} \cdot \frac{(-1)^{6}}{2^{6} \cdot 6!} \int_{-1}^{1} \frac{d^{6}}{d x^{6}}\left(f^{(-6)}\right)(x) \cdot\left(x^{2}-1\right)^{6} d x
$$

But by the construction, the sixth derivative of f is equal to $x \mapsto\left(x^{2}-1\right)^{-6}$. Therefore, we get that

$$
a_{6}=\frac{13}{2} \frac{1}{2^{6} \cdot 6!} \int_{-1}^{1}\left(x^{2}-1\right)^{-6}\left(x^{2}-1\right)^{6} d x=\frac{13}{2^{6} \cdot 6!}
$$

Problem 5: Since f is continuous on the closed interval $[-1,1]$, it is certainly bounded and has both f and f^{2} integrable. By Parseval's theorem, we see that the answer is

$$
\sum_{k=0}^{\infty} \frac{2}{2 k+1} a_{k}^{2}=\int_{-1}^{1} f(t)^{2} d t
$$

Problem 6: Using the recurrence formula for Legendre polynomials, we see that the answer is

$$
x P_{101}(x)=\frac{102}{203} P_{102}(x)+\frac{101}{203} P_{100}(x) .
$$

